## **Competitive learning**

Topic 8 Note: lecture notes by Bob Keller (Harvey Mudd College, CA) are used

### Main idea: combine unsupervised and supervised learning

- **Supervised learning**: training using desired response for given stimuli ("rote" learning)
- Unsupervised learning: classification by "clustering" of stimuli, without specified response
- **Hybrid**: e.g. unsupervised to form cluster, supervised to learn desired response to class

### Two – way competition







## An application example

- Display an image file with "millions of colors" on a graphic display with, say, 256 colors.
- Each color in the image has to be mapped
- Map each image color into the closest one of the 256.
- The actual choice of the 256 might not be fixed; it is likely a limitation of some hardware table (of RGB values) rather than a limitation of the screen itself.
- In this case, a competitive network can **learn** a reasonable set of colors to use for a given image.

#### Measures of similarity or closeness (opposite: distance)

- Suppose x is an input vector and wi the weight vector of the ith neuron.
- One measure of distance is the **Euclidean distance**:  $|| x w_i || = sqrt(sumi((x_i w_{ii})^2))$
- = sqrt(  $(x_i w_{ii})^*(x_i w_{ii})^T)$  (vector inner product)
- Another measure of distance, used when the values are integer, is the "Manhattan" or "city-block" distance:
   || x - w<sub>i</sub> || = sum<sub>i</sub>(|x<sub>i</sub> - w<sub>ii</sub>|)
- Another measure of distance, used when the values are 2-valued, is the "Hamming distance": sum<sub>i</sub>( |x<sub>j</sub> == w<sub>ij</sub>|)
  0 when the values are equal, 1 otherwise



#### Example of different metrics



#### Determining the winne

- The winner is the neuron with weight either:
- the smallest distance to the input, or
- the largest inner product with the input.
- Again, if inner products are used, it is best to normalize the weight and input first, or use only normalized values.



# Max sub-network

- a recurrent neural net that cycles values through neurons, eliminating one loser each cycle until only the winner is left.
- Each neuron has as inputs the outputs of all neurons including itself.
- Self-weights are 1;
- Weights from other neurons are - $\varepsilon$ , where  $\varepsilon$  is any quantity < 1/(# of neurons).

### Max network

- Activation functions are "poslin": poslin(x) = x if x > 0, 0 otherwise
- The network is operated synchronously.
- The initial outputs are forced to those of the input values. On each cycle, each neuron computes poslin(weighted
- inputs).For the ith neuron yi := poslin(yi -εΣ yj)
- =  $(1+\varepsilon)yi \varepsilon\Sigma yj$
- These weights are designed so that:
- all but one output is non-zero after n cycles (assuming inputs were originally distinct)
- all outputs persist at the same value after n cycles

| COMPET | l'(N) takes one in | put argument,   | 125                               |                         |
|--------|--------------------|-----------------|-----------------------------------|-------------------------|
| N      | - SxQ matrix of r  | et input (colum | n) vectors.                       | 20                      |
| and    | returns output ve  | ctors with I wi | ere each net input<br>0 elsewhere |                         |
|        |                    |                 | o case marter                     | h put Com pessive Layer |
|        |                    |                 |                                   |                         |
|        |                    |                 |                                   |                         |
|        |                    |                 |                                   |                         |
|        |                    |                 |                                   | 1.12                    |
|        |                    |                 |                                   | R S .                   |
|        |                    |                 |                                   |                         |
|        |                    |                 |                                   | a = compet(n)           |
|        | 1 2. 1. 5. 2       | . 01            | 2 1) 1                            | = compet(Wj             |
| compe  | ul-3, -1, 5, 2     | (-91) => (      | 5,1) 1                            |                         |
|        | 7 colu             | mn separators   | T                                 |                         |

# Using Competition in Conjunction with Learning

- Input presented
- Winner selected
- The winner learns
- Others "close to" winner may learn as well.

| Instar rule                                                                                                                                                             |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <b>Instar Rule</b> (Stephen Grossberg)<br>pattern - weight<br>$w(q) = w(q-1) + ca_{q}(q)(\overline{p(q)} - w(q-1))$<br>1 for i = winner<br>0 otherwise<br>learning rate |
|                                                                                                                                                                         |

|                  | input                                                                                |   |
|------------------|--------------------------------------------------------------------------------------|---|
|                  | $\mathbf{w}(q) = \mathbf{w}(q-1) + \alpha(\mathbf{p}(q) - \mathbf{w}(q-1))$          |   |
| index of winners | $\int_{p^*} \mathbf{w}(q) = (1-\alpha)_{p^*} \mathbf{w}(q-1) + \alpha \mathbf{p}(q)$ |   |
|                  | $_{i}\mathbf{W}(q) = _{i}\mathbf{W}(q-1)$ $i$ $i^{\pm}$                              |   |
| In the cone      | ral Kohonen rule, there can be multiple "winner                                      | ~ |

