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Main idea: learning based on Main idea: learning based on 
association between neuronsassociation between neurons

The main property of a neural network is an ability to learn froThe main property of a neural network is an ability to learn from m 
its environment, and to improve its performance through its environment, and to improve its performance through 
learning.  So far we have considered learning.  So far we have considered supervisedsupervised oror active active 
learninglearning −− learning with an external “teacher” or a supervisor learning with an external “teacher” or a supervisor 
who presents a training set to the network.  But another type ofwho presents a training set to the network.  But another type of
learning also exists: learning also exists: unsupervised learningunsupervised learning. In contrast to . In contrast to 
supervised learning, unsupervised or supervised learning, unsupervised or selfself--organised learningorganised learning
does not require an external teacher.  During the training does not require an external teacher.  During the training 
session, the neural network receives a number of different inputsession, the neural network receives a number of different input
patterns, discovers significant features in these patterns and patterns, discovers significant features in these patterns and 
learns how to classify input data into appropriate categories.  learns how to classify input data into appropriate categories.  
Unsupervised learning tends to follow the Unsupervised learning tends to follow the neuroneuro--biological biological 
organisation of the brain.organisation of the brain.
Unsupervised learning algorithms aim to learn rapidly and can Unsupervised learning algorithms aim to learn rapidly and can 
be used in realbe used in real--time.time.

In 1949, Donald In 1949, Donald HebbHebb proposed one of the key proposed one of the key 
ideas in biological learning, commonly known as ideas in biological learning, commonly known as 
Hebb’sHebb’s LawLaw.  .  Hebb’sHebb’s Law states that if neuron Law states that if neuron ii is is 
near enough to excite neuron near enough to excite neuron jj and repeatedly and repeatedly 
participates in its activation, the synaptic connection participates in its activation, the synaptic connection 
between these two neurons is strengthened and between these two neurons is strengthened and 
neuron neuron jj becomes more sensitive to stimuli from becomes more sensitive to stimuli from 
neuron neuron ii..

HebbianHebbian learninglearning

Hebb’sHebb’s PostulatePostulate
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Cell Body
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Synapse

“When an axon of cell A is near enough to excite a cell B and 
repeatedly or persistently takes part in firing it, some growth 
process or metabolic change takes place in one or both cells such 
that A’s efficiency, as one of the cells firing B, is increased.”

D. O. Hebb, 1949
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Hebb’sHebb’s Law can be represented in the form of two Law can be represented in the form of two 
rules:rules:

1. If two neurons on either side of a connection 1. If two neurons on either side of a connection 
are activated synchronously, then the weight of are activated synchronously, then the weight of 
that connection is increased.that connection is increased.

2. If two neurons on either side of a connection 2. If two neurons on either side of a connection 
are activated asynchronously, then the weight are activated asynchronously, then the weight 
of that connection is decreased (added later)of that connection is decreased (added later)

Hebb’sHebb’s Law provides the basis for learning Law provides the basis for learning 
without a teacher.  Learning here is a without a teacher.  Learning here is a local local 
phenomenonphenomenon occurring without feedback from occurring without feedback from 
the environment.the environment.

HebbianHebbian learning in a neural networklearning in a neural network
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HebbianHebbian learning implies that weights can only learning implies that weights can only 
increase. To resolve this problem, we might increase. To resolve this problem, we might 
impose a limit on the growth of synaptic weights.  impose a limit on the growth of synaptic weights.  
It can be done by introducing a nonIt can be done by introducing a non--linear linear 
forgetting factorforgetting factor into into Hebb’sHebb’s Law:Law:

where where ϕϕ is the forgetting factor.is the forgetting factor.

Forgetting factor usually falls in the interval Forgetting factor usually falls in the interval 
between 0 and 1, typically between 0.01 and 0.1, between 0 and 1, typically between 0.01 and 0.1, 
to allow only a little “forgetting” while limiting to allow only a little “forgetting” while limiting 
the weight growth.the weight growth.
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UnsupervisedUnsupervised HebbHebb RuleRule
w ij

q( ) w ij q 1–( ) αai q( )p j q( )+=

W q( ) W q 1–( ) αa q( )pT q( )+=

Vector Form:

p 1( ) p 2( ) … p Q( ), , ,

Training Sequence:

Banana Recognition ExampleBanana Recognition Example

w0 1 w 0( ), 0= =
Initial Weights:

p0 1( ) 0= p 1( ), 1={ } p0 2( ) 1= p 2( ), 1={ } …, ,

Training Sequence:

w q( ) w q 1–( ) a q( )p q( )+=

a 1( ) hardlim w0 p0 1( ) w 0( )p 1( ) 0.5–+( )
hardlim 1 0⋅ 0 1⋅ 0.5–+( ) 0 (no response)

=
= =

First Iteration (sight fails):

w 1( ) w 0( ) a 1( )p 1( )+ 0 0 1⋅+ 0= = =

α = 1

ExampleExample

a 2( ) hardlim w0 p0 2( ) w 1( )p 2( ) 0.5–+( )
hardlim 1 1⋅ 0 1⋅ 0.5–+( ) 1 (banana)

=
= =

Second Iteration (sight works):

w 2( ) w 1( ) a 2( )p 2( )+ 0 1 1⋅+ 1= = =

Third Iteration (sight fails):

a 3( ) hardlim w0p0 3( ) w 2( ) p 3( ) 0.5–+( )
hardlim 1 0⋅ 1 1⋅ 0.5–+( ) 1 (banana)

=
= =

w 3( ) w 2( ) a 3( )p 3( )+ 1 1 1⋅+ 2= = =

Banana will now be detected if either sensor works.

Problems withProblems with HebbHebb RuleRule

Weights can become arbitrarily Weights can become arbitrarily 
largelarge

There is no mechanism for There is no mechanism for 
weights to decreaseweights to decrease

HebbHebb Rule with DecayRule with Decay
W q( ) W q 1–( ) αa q( )pT q( ) γW q 1–( )–+=

W q( ) 1 γ–( )W q 1–( ) αa q( )pT q( )+=

This keeps the weight matrix from growing without bound, 
which can be demonstrated by setting both ai and pj to 1:
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Example: BananaExample: Banana AssociatorAssociator

a 1( ) hardlim w0 p0 1( ) w 0( )p 1( ) 0.5–+( )
hardlim 1 0⋅ 0 1⋅ 0.5–+( ) 0 (no response)

=
= =

First Iteration (sight fails):

w 1( ) w 0( ) a 1( )p 1( ) 0.1 w 0( )–+ 0 0 1⋅ 0.1 0( )–+ 0= = =

a 2( ) hardlim w0p0 2( ) w 1( )p 2( ) 0.5–+( )
hardlim 1 1⋅ 0 1⋅ 0.5–+( ) 1 (banana)

=
= =

Second Iteration (sight works):

w 2( ) w 1( ) a 2( )p 2( ) 0.1w 1( )–+ 0 1 1⋅ 0.1 0( )–+ 1= = =

γ = 0.1α = 1



ExampleExample
Third Iteration (sight fails):

a 3( ) hardlim w0p0 3( ) w 2( ) p 3( ) 0.5–+( )
hardlim 1 0⋅ 1 1⋅ 0.5–+( ) 1 (banana)

=
= =

w 3( ) w 2( ) a 3( )p 3( ) 0.1w 3( )–+ 1 1 1⋅ 0.1 1( )–+ 1.9= = =
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Problem ofProblem of HebbHebb with Decaywith Decay
• Associations will decay away if stimuli are not 

occasionally presented.

wij q( ) 1 γ–( )wij q 1–( )=

If ai = 0, then

If γ = 0, this becomes

wij q( ) 0.9( )wij
q 1–( )=

Therefore the weight decays by 10% at each iteration
where there is no stimulus.

0 10 20 30
0

1

2

3

Using Using Hebb’sHebb’s Law we can express the adjustment Law we can express the adjustment 
applied to the weight applied to the weight wwijij at iteration at iteration pp in the in the 
following form:following form:

As a special case, we can represent As a special case, we can represent Hebb’sHebb’s Law as Law as 
follows:follows:

where where αα is the is the learning ratelearning rate parameter.parameter.
This equation is referred to as the This equation is referred to as the activity product activity product 
rulerule..
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HebbianHebbian learning algorithmlearning algorithm
Step 1Step 1: Initialisation.: Initialisation.

Set initial synaptic weights and thresholds to small Set initial synaptic weights and thresholds to small 
random values, say in an interval [0, 1].random values, say in an interval [0, 1].

Step 2Step 2: Activation.: Activation.
Compute the neuron output at iteration Compute the neuron output at iteration pp

where where nn is the number of neuron inputs, and is the number of neuron inputs, and θθjj is the is the 
threshold value of neuron threshold value of neuron jj..
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Step 3Step 3:: Learning.Learning.
Update the weights in the network:Update the weights in the network:

where where ∆∆wwijij((pp) is the weight correction at iteration ) is the weight correction at iteration pp..

The weight correction is determined by the The weight correction is determined by the 
generalised activity product rule:generalised activity product rule:

Step 4Step 4: Iteration.: Iteration.
Increase iteration Increase iteration pp by one, go back to Step 2.by one, go back to Step 2.

)()()1( pwpwpw ijijij ∆+=+

][ )()()( )( pwpxpypw ijijij −λϕ=∆

To illustrate To illustrate HebbianHebbian learning, consider a fully learning, consider a fully 
connected connected feedforwardfeedforward network with a single layer network with a single layer 
of five computation neurons. Each neuron is of five computation neurons. Each neuron is 
represented by a McCulloch and Pitts model with represented by a McCulloch and Pitts model with 
the sign activation function. The network is trained the sign activation function. The network is trained 
on the following set of input vectors:on the following set of input vectors:

HebbianHebbian learning elearning examplexample
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Initial and final states of the networkInitial and final states of the network
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When this probe is presented to the network, we When this probe is presented to the network, we 
obtain:obtain:
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A test input vector, or probe, is defined asA test input vector, or probe, is defined as

Variations ofVariations of HebbianHebbian LearningLearning
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Basic Rule:

Learning Rate:

Smoothing:

Delta Rule:

Unsupervised:


