
Hebbian Hebbian LearningLearning

Topic 6 Topic 6
Note: lecture notes by Michael Note: lecture notes by Michael NegnevitskyNegnevitsky
(university of Tasmania), Bob Keller (university of Tasmania), Bob Keller
(Harvey (Harvey MuddMudd College, CA) and Martin College, CA) and Martin
Hagan (University of Colorado) are usedHagan (University of Colorado) are used

Main idea: learning based on Main idea: learning based on
association between neuronsassociation between neurons

The main property of a neural network is an ability to learn froThe main property of a neural network is an ability to learn from m
its environment, and to improve its performance through its environment, and to improve its performance through
learning. So far we have considered learning. So far we have considered supervisedsupervised oror active active
learninglearning −− learning with an external “teacher” or a supervisor learning with an external “teacher” or a supervisor
who presents a training set to the network. But another type ofwho presents a training set to the network. But another type of
learning also exists: learning also exists: unsupervised learningunsupervised learning. In contrast to . In contrast to
supervised learning, unsupervised or supervised learning, unsupervised or selfself--organised learningorganised learning
does not require an external teacher. During the training does not require an external teacher. During the training
session, the neural network receives a number of different inputsession, the neural network receives a number of different input
patterns, discovers significant features in these patterns and patterns, discovers significant features in these patterns and
learns how to classify input data into appropriate categories. learns how to classify input data into appropriate categories.
Unsupervised learning tends to follow the Unsupervised learning tends to follow the neuroneuro--biological biological
organisation of the brain.organisation of the brain.
Unsupervised learning algorithms aim to learn rapidly and can Unsupervised learning algorithms aim to learn rapidly and can
be used in realbe used in real--time.time.

In 1949, Donald In 1949, Donald HebbHebb proposed one of the key proposed one of the key
ideas in biological learning, commonly known as ideas in biological learning, commonly known as
Hebb’sHebb’s LawLaw. . Hebb’sHebb’s Law states that if neuron Law states that if neuron ii is is
near enough to excite neuron near enough to excite neuron jj and repeatedly and repeatedly
participates in its activation, the synaptic connection participates in its activation, the synaptic connection
between these two neurons is strengthened and between these two neurons is strengthened and
neuron neuron jj becomes more sensitive to stimuli from becomes more sensitive to stimuli from
neuron neuron ii..

HebbianHebbian learninglearning

Hebb’sHebb’s PostulatePostulate

Axon

Cell Body

Dendrites

Synapse

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

D. O. Hebb, 1949

A

B

LinearLinear AssociatorAssociator

p an

�
�

W
R x 1

S x R
S x 1 S x 1

Inputs

�
�
�
�

a = purelin (Wp)

Linear Layer

R S

a W p=

p1 t1{ , } p2 t2{ , } … pQ tQ{ , }, , ,

Training Set:

ai wij p j
j 1=

R

∑=

HebbHebb RuleRule
w ij

ne w wij
ol d α f i ai q()gj p jq()+=

Presynaptic Signal

Postsynaptic Signal

Simplified Form:

Supervised Form:

wi j
ne w w ij

ol d αaiq p jq
+=

wi j
new w ij

ol d tiq p jq
+=

Matrix Form:
Wnew W old tqpq

T+=

Batch OperationBatch Operation
W t1p1

T t2p2
T … tQpQ

T+ + + tqpq
T

q 1=

Q

∑= =
…

W t1 t2 … tQ

p1
T

p2
T

pQ
T

TPT
= =

T t1 t2 … tQ=

P p1 p2 … pQ=

Matrix Form:

(Zero Initial
Weights)

Hebb’sHebb’s Law can be represented in the form of two Law can be represented in the form of two
rules:rules:

1. If two neurons on either side of a connection 1. If two neurons on either side of a connection
are activated synchronously, then the weight of are activated synchronously, then the weight of
that connection is increased.that connection is increased.

2. If two neurons on either side of a connection 2. If two neurons on either side of a connection
are activated asynchronously, then the weight are activated asynchronously, then the weight
of that connection is decreased (added later)of that connection is decreased (added later)

Hebb’sHebb’s Law provides the basis for learning Law provides the basis for learning
without a teacher. Learning here is a without a teacher. Learning here is a local local
phenomenonphenomenon occurring without feedback from occurring without feedback from
the environment.the environment.

HebbianHebbian learning in a neural networklearning in a neural network

i j

I n
 p

 u
 t

 S
 i

g
n

a
l s

O
 u

 t
p

u
t

 S
 i

g
n

a
l s

HebbianHebbian learning implies that weights can only learning implies that weights can only
increase. To resolve this problem, we might increase. To resolve this problem, we might
impose a limit on the growth of synaptic weights. impose a limit on the growth of synaptic weights.
It can be done by introducing a nonIt can be done by introducing a non--linear linear
forgetting factorforgetting factor into into Hebb’sHebb’s Law:Law:

where where ϕϕ is the forgetting factor.is the forgetting factor.

Forgetting factor usually falls in the interval Forgetting factor usually falls in the interval
between 0 and 1, typically between 0.01 and 0.1, between 0 and 1, typically between 0.01 and 0.1,
to allow only a little “forgetting” while limiting to allow only a little “forgetting” while limiting
the weight growth.the weight growth.

)()()()()(pwpypxpypw ijjijij ϕ−α=∆

Simple Associative NetworkSimple Associative Network

an

Inputs

b = -0.5

p

1

�Σ ��
w

a = hardlim (wp + b)

Hard Limit Neuron

a hardlim w p b+() hardlim w p 0.5–()= =

p
1 stimulus,
0 no stimulus,⎩

⎨
⎧= a

1 response,
0 no response,⎩

⎨
⎧=

BananaBanana AssociatorAssociator
Fruit

Network

Banana?

Shape Smell

a = hardlim (w0p0 + w p + b)

Hard Limit Neuron

Sight of banana p0

a Banana?n

Inputs

b = -0.5Smell of banana p w = 0

w0 = 1

1

��Σ ��

p0 1 shape detected,
0 shape not detected,⎩

⎨
⎧= p

1 smell detected,
0 smell not detected,⎩

⎨
⎧=

Unconditioned Stimulus Conditioned Stimulus

UnsupervisedUnsupervised HebbHebb RuleRule
w ij

q() w ij q 1–() αai q()p j q()+=

W q() W q 1–() αa q()pT q()+=

Vector Form:

p 1() p 2() … p Q(), , ,

Training Sequence:

Banana Recognition ExampleBanana Recognition Example

w0 1 w 0(), 0= =
Initial Weights:

p0 1() 0= p 1(), 1={ } p0 2() 1= p 2(), 1={ } …, ,

Training Sequence:

w q() w q 1–() a q()p q()+=

a 1() hardlim w0 p0 1() w 0()p 1() 0.5–+()
hardlim 1 0⋅ 0 1⋅ 0.5–+() 0 (no response)

=
= =

First Iteration (sight fails):

w 1() w 0() a 1()p 1()+ 0 0 1⋅+ 0= = =

α = 1

ExampleExample

a 2() hardlim w0 p0 2() w 1()p 2() 0.5–+()
hardlim 1 1⋅ 0 1⋅ 0.5–+() 1 (banana)

=
= =

Second Iteration (sight works):

w 2() w 1() a 2()p 2()+ 0 1 1⋅+ 1= = =

Third Iteration (sight fails):

a 3() hardlim w0p0 3() w 2() p 3() 0.5–+()
hardlim 1 0⋅ 1 1⋅ 0.5–+() 1 (banana)

=
= =

w 3() w 2() a 3()p 3()+ 1 1 1⋅+ 2= = =

Banana will now be detected if either sensor works.

Problems withProblems with HebbHebb RuleRule

Weights can become arbitrarily Weights can become arbitrarily
largelarge

There is no mechanism for There is no mechanism for
weights to decreaseweights to decrease

HebbHebb Rule with DecayRule with Decay
W q() W q 1–() αa q()pT q() γW q 1–()–+=

W q() 1 γ–()W q 1–() αa q()pT q()+=

This keeps the weight matrix from growing without bound,
which can be demonstrated by setting both ai and pj to 1:

wij
max 1 γ–()wij

max α ai pj
+=

wij
max 1 γ–()wij

max α+=

wij
max α

γ
---=

Example: BananaExample: Banana AssociatorAssociator

a 1() hardlim w0 p0 1() w 0()p 1() 0.5–+()
hardlim 1 0⋅ 0 1⋅ 0.5–+() 0 (no response)

=
= =

First Iteration (sight fails):

w 1() w 0() a 1()p 1() 0.1 w 0()–+ 0 0 1⋅ 0.1 0()–+ 0= = =

a 2() hardlim w0p0 2() w 1()p 2() 0.5–+()
hardlim 1 1⋅ 0 1⋅ 0.5–+() 1 (banana)

=
= =

Second Iteration (sight works):

w 2() w 1() a 2()p 2() 0.1w 1()–+ 0 1 1⋅ 0.1 0()–+ 1= = =

γ = 0.1α = 1

ExampleExample
Third Iteration (sight fails):

a 3() hardlim w0p0 3() w 2() p 3() 0.5–+()
hardlim 1 0⋅ 1 1⋅ 0.5–+() 1 (banana)

=
= =

w 3() w 2() a 3()p 3() 0.1w 3()–+ 1 1 1⋅ 0.1 1()–+ 1.9= = =

0 10 20 30
0

10

20

30

0 10 20 30
0

2

4

6

8

10

Hebb Rule Hebb with Decay

wi j
m ax α

γ
--- 1

0.1
------- 10= = =

Problem ofProblem of HebbHebb with Decaywith Decay
• Associations will decay away if stimuli are not

occasionally presented.

wij q() 1 γ–()wij q 1–()=

If ai = 0, then

If γ = 0, this becomes

wij q() 0.9()wij
q 1–()=

Therefore the weight decays by 10% at each iteration
where there is no stimulus.

0 10 20 30
0

1

2

3

Using Using Hebb’sHebb’s Law we can express the adjustment Law we can express the adjustment
applied to the weight applied to the weight wwijij at iteration at iteration pp in the in the
following form:following form:

As a special case, we can represent As a special case, we can represent Hebb’sHebb’s Law as Law as
follows:follows:

where where αα is the is the learning ratelearning rate parameter.parameter.
This equation is referred to as the This equation is referred to as the activity product activity product
rulerule..

][)(),()(pxpyFpw ijij =∆

)()()(pxpypw ijij α=∆

HebbianHebbian learning algorithmlearning algorithm
Step 1Step 1: Initialisation.: Initialisation.

Set initial synaptic weights and thresholds to small Set initial synaptic weights and thresholds to small
random values, say in an interval [0, 1].random values, say in an interval [0, 1].

Step 2Step 2: Activation.: Activation.
Compute the neuron output at iteration Compute the neuron output at iteration pp

where where nn is the number of neuron inputs, and is the number of neuron inputs, and θθjj is the is the
threshold value of neuron threshold value of neuron jj..

j

n

i
ijij pwpxpy θ−=∑

=1
)()()(

Step 3Step 3:: Learning.Learning.
Update the weights in the network:Update the weights in the network:

where where ∆∆wwijij((pp) is the weight correction at iteration) is the weight correction at iteration pp..

The weight correction is determined by the The weight correction is determined by the
generalised activity product rule:generalised activity product rule:

Step 4Step 4: Iteration.: Iteration.
Increase iteration Increase iteration pp by one, go back to Step 2.by one, go back to Step 2.

)()()1(pwpwpw ijijij ∆+=+

][)()()()(pwpxpypw ijijij −λϕ=∆

To illustrate To illustrate HebbianHebbian learning, consider a fully learning, consider a fully
connected connected feedforwardfeedforward network with a single layer network with a single layer
of five computation neurons. Each neuron is of five computation neurons. Each neuron is
represented by a McCulloch and Pitts model with represented by a McCulloch and Pitts model with
the sign activation function. The network is trained the sign activation function. The network is trained
on the following set of input vectors:on the following set of input vectors:

HebbianHebbian learning elearning examplexample

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
0
0
0

1X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
1
0

2X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
1
0
0
0

3X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

0
0
1
0
0

 4X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
1
0

5X

Input layer

x1 1

Output layer

2

1 y1

y2x2 2

x3 3

x4 4

x5 5

4

3 y3

y4

5 y5

1

0

0

0

1

1

0

0

0

1

Input layer

x1 1

Output layer

2

1 y1

y2x2 2

x3 3

x4 4

x5

4

3 y3

y4

5 y5

1

0

0

0

1

0

0

1

0

1

2

5

Initial and final states of the networkInitial and final states of the network

O u t p u t l a y e r

I n
 p

 u
 t

 l
a

y
e

r

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1

21 43 5

1

2

3

4

5

O u t p u t l a y e r

I n
 p

 u
 t

 l
a

y
e

r

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

0
0
0
0
0
1 2 3 4 5

1

2

3

4

5

0
0

2.0204
0

2.0204

1.0200
0
0

0
0 0.9996

0
0

0

0
0
0

2.0204
0

2.0204⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

Initial and final weight matricesInitial and final weight matrices

When this probe is presented to the network, we When this probe is presented to the network, we
obtain:obtain:

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
0
1

X

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

−

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

⎥
⎥
⎥
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢
⎢
⎢
⎢

⎣

⎡

=

1
0
0
1
0

0737.0
9478.0
0907.0
2661.0
4940.0

1
0
0
0
1

2.0204 0 0 2.0204 0
0 0.9996 0 0 0
0 0 1.0200 0 0

2.0204 0 0 2.0204 0
0 0 0 0 0

 signY

A test input vector, or probe, is defined asA test input vector, or probe, is defined as

Variations ofVariations of HebbianHebbian LearningLearning
Wnew W old tqpq

T+=

Wnew W old α tqpq
T+=

Wnew W old α tqpq
T γW old–+ 1 γ–()W old αtqpq

T+= =

Wne w Wol d α tq aq
–()pq

T+=

Wnew Wold αaqpq
T+=

Basic Rule:

Learning Rate:

Smoothing:

Delta Rule:

Unsupervised:

