Hebbian Learning

Topic 6
Note: lecture notes by Michael Negnevitsky
(university of Tasmania), Bob Keller
(Harvey Mudd College, CA) and Martin
Hagan (University of Colorado) are used

Hebb’'s Postulate

“When an axon of cell A is near enough to excite a cell B and
repeatedly or persistently takes part in firing it, some growth
process or metabolic change takes place in one or both cells such
that A’s efficiency, as one of the cells firing B, is increased.”

D. O. Hebb, 1949

Mainiidea: learning based on
association between neurons

The main property of a neural network is an ability to learn from

its environment, and'to improve its performance through
learning. So far we have considered supervised or active
learning — learning with an external “teacher” or a supervisor
who presents a training set to the network. But another type of
learning also exists: unsupervised learning. In contrast to
supervised learning, unsupervised or self-organised learning
does not require an external teacher. During the training
session, the neural network receives a number of different input
patterns, discovers significant features in these patterns and
learns how to classify input data into appropriate categories.
Unsupervised learning tends to follow the neuro-biological
organisation of the brain.

Unsupervised learning algorithms aim to learn rapidly and can
be used in real-time.

Linear Associator

a=Wp

Training Set:
{pyt3.{p,

- Hebbianlearning

In 1949, Donald Hebb propesed one of the key:
= ideasiin-biclogicallearning; commonly-knownas

Hebb’s Law. Hebb’s Law states that if neuron I'is

= participates-in-itsactivation;-the-synapticconnection—
petween these two neurens is strengthened and
neuron j-becomes more sensitive to stimuli-from
neuron i.

Hebb Rule

whew = wold+o f(a)g:(p,)

Presynaptic Signal
Postsynaptic Signal
ew = Id+
Wi = WS aagp
Supervised Form:

wiew = wold+gop

Matrix Form:
wnew = yold ¢ pT
atq

. Hebb’s LLaw; can be represented in the form of two - Hebbian learning in aneural network
Batch Operation rules: Y
el <, or Zero Iniial 1. If two neurons on €either side of a connection
S e o Weights) are activated synchronously, then the weight of
that connection isincreased.

.
AV
LX</

Q
N
AN

Matrix Form:

I3
Hebb’s Law provides the basis for learning Mb

without a teacher. Learning here is a local
phenomenon occurring without feedback from
the environment.

Input Signals
Output Signals

m Hebbian learning implies that weights can only: 3 4 -
increase. To resolve this problem, we might Simple: Associative Network Banana Associator:

impose a limit on the grewth ofi synaptic weights.
It can be done by introducing a non-linear
forgetting factor into Hebb’s Law:

Awij (p) =0 Yj(P) X (P)—¢ ¥j(P) W;(p)

where o is the forgetting factor.

Forgetting factor usually falls in the interval
between 0 and 1, typically between 0.01 and 0.1,
to allow only a little “forgetting” while limiting
the weight growth. b= } (1). stimulus [1, response Unconditioned Stimulus Conditioned Stimulus

| I Ss L IOIETLIED o] 1, shape detected _ \ 1, smell detected
| 0, shape not detected \ 0, smell not detected

a = hardlim(wp *b) = hardlim(wp—05)

Unsupervised Hebbr Rule Banana Recognition Example = Example

Initial Weights: Second Iteration (sight works):
w0 =1w(0) =0

Training Sequence:

Vector Form: (D) =0,p(d) =1}, (p%2)=1,p@)=1}, ...

W@ = wy(q- 1)+ aa(q)p(a)

1
. w@EFw@bYta@p@ Third Iteration (sight fails):

Training Sequence: First Iteration (sight fails): = hardlim(1-0+1.1-05) = 1 (banana)

Pd), P2),...,PQ - WS Ew@ta@pH=i+ll=2

Banana will now be detected if either sensor works.

Problems with Hebl Rule HebbrRulewith Decay, Example: Banana Asseciator

W(g) =W (g-1)+ a(q)PT(q) ~YW(q-1) - qg=t——~=01—————————————

= Weights can become arbitrarily W =1+ aaqPTg) First Iteration (sight fals):

large — =

y . This keeps the weight matrix from growing without bound,
m There is no mechanism for which can be demonstrated by setting both a; and p; to 1:

weights to decrease

wil) = w(0)+a(1yp(1)=01y(0) =0+0.1-01(0) =0

WFJ.W =(1-v)ijﬁﬂ“ oap; Second lteration (sight works):

ae ard |mlp1)+Wl'Pl 0.5

o = hardlim(1-1+0-1-0.5) = na)

Y

)Wﬂ.]ax+ a

w2) =wh+a@)pd)-0Iwh) =0+1. 1-010) =1

Example
Third Iteration (sight fails):

a(3) = hardlim(wop%3) +w(2) p(3) -05)
= hardlim(1-0+1.1-05) = 1 (banana)

w(3) = w() +a@3)p3)-01w(3) = 1+1.1-01(1) = 19

Hebb Rule Hebb with Decay

Hebbianilearning|algorithm

Step 1: IInitialisation.
Set initial synaptic weights and thresholds to small
random values, say: in aniinterval [0, 1].

Step 2: Activation.
Compute the neuron output at iteration p

yi(p) =% (p) w;j(p)-6;
=

where n is the number of neuron inputs, and ; is the
threshold value of neuron j.

Proeblem off Hebbiwith Decay

« Associations will decay away if stimuli are not
occasionally presented.

If a; =0, then

S (il=y =il
wijlql (,)wij(q)

If y = 0, this becomes

= (0.9 -1
wulqb (lelG)

Therefore the weight decays by 10% at each iteration
where there is no stimulus.

Step 3: Learning.
Update the weights inithe network:

Wi (p+1) =w;; (p) +Aw; (p)

where Aw;;(p) is the weight correction at iteration p.

The weight correction is determined by the
generalised activity product rule:

Awij(p) =0 ¥ (P)[1 % (p)—w;(p)]

Step 4: Iteration.
Increase iteration p by one, go back to Step 2.

= m UsingrHebb’s [Cawwe canexpress the-adjustment
applied to the weight wyj; atiteration piin the

- follewing form:
Awij (p) = F[y;(p) xi(p)]

- m As aspecial case, we can represent Hebb’s Lawas
follows:

Aw;i(p)=a yj(p) X (p)
= where ezisthelearning-rate-parameter:

This equation is referred to as the activity product
e — 00000

Hebbianilearning example
To illustrate Hebbian learning, consider a fully,
= connected feedforward network-with-asinglelayer
of five computation neurons. Each neuron is
represented by a McCulloch and Pitts model with
—the-sign-activation-function-T-he-network-is-trained——
on the following set of input vectors:

Initial an

Input layer

\/ariati

Basic Rule:

Learning Rate: ~ W™ =W°“+atp;

Smoothing:

Delta Rule:

Unsupervised:

d final states of the network

Output layer Input layer Output layer

ons of Hebbiani Learning

new — \y old T
w =W + 1P

ew _ old T id _ Id T
W = W+ atpg —yW o = (1-y)W "+ atpy

Wrew = wold 4 ¢ —gypT
oty WPq

new — yyold 4 T
wi weld+ ga pT

Input layer

G B bR E

Initial and final weight matrices

Outp
©® o
0 0

0 2.0204

0 0 1.0200
0

0

0 0 0999% 0
2.0204 0 0 2.0204

Inputlayer
[l =] [B

m A test input vector, or probe, is defined as

obtain:
0 0 0 0 717 [0.4940
20204 0 0 2.0204(0| |0.2661
0 1.0200 0 0 |ol|-|0.0007
0 0 09996 0 [0| |0.9478
20204 0 0 202041 |0.0737

