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Main idea: change the activation Main idea: change the activation 
functionfunction

In contrast to sigmoidal functions, radial 
basis functions have radial symmetry 
about a center in n-space (n = # of 
inputs).
The farther from the center the input is, 
the less the activation.
This models the “on-center off-surround” 
phenomenon found in certain real neurons 
in the visual system, for example.

Main idea: geometryMain idea: geometry

OnOn--Center response in a labCenter response in a lab
LGN (lateral geniculate nucleus) description, from

http://www.science.gmu.edu/~nbanerje/csi801/report_html.htm
LGN is a folded sheet of neurons (1.5 million cells), about the size of a
credit card but about three times as thick, found on each side of the brain.
The ganglion cells of the LGN transform the signals into a temporal series
of discrete electrical impulses called action potentials or spikes. The
ganglion cell responses are measured by recording the temporal pattern of
action potentials caused by light stimulation.
The receptive fields of the LGN neurons are circularly symmetric and
have the same center-surround organization. The algebraic sum of the
center and surround mechanisms has a vague resemblance to a sombrero
with a tall peak, so this model of the receptive field is sometimes called
"Mexican-hat model." When the spatial profiles of center and surround
mechanisms can be described by Gaussian functions the model is referred
to as the "difference-of-Gaussians" model.

LGN responseLGN response ModelingModeling



Other RBF examplesOther RBF examples Spread = 1/selectivitySpread = 1/selectivity RBF Network : two layers onlyRBF Network : two layers only

RBF networkRBF network Example: XOR with RBFExample: XOR with RBF Example: XOR with RBFExample: XOR with RBF



Example: XOR with RBFExample: XOR with RBF Example: Function approximationExample: Function approximation demodemo

demodemo RBF propertiesRBF properties

RBF networks tend to have good interpolation 
properties, but not as good extrapolation 
properties as MLP’s. For extrapolation, using a 
given number of neurons, an MLP could be a 
much better fit. 
With proper setup, RBFNs can train in time 
orders of magnitude faster than 
backpropagation.
RBFNs enjoy the same universal approximation 
properties as MLPs: given sufficient neurons, 
any reasonable function can be approximated 
(with just 2 layers).

Example: Example: matlab newrbmatlab newrb

% NEWRB(PR,T,GOAL,SPREAD,MN,DF) takes these arguments,
% P - RxQ matrix of Q input vectors.
% T - SxQ matrix of Q target class vectors.
% GOAL - Mean squared error goal, default = 0.0.
% SPREAD - Spread of radial basis functions, default = 1.0.
% MN - Maximum number of neurons, default is Q.
% and returns a new radial basis network.
% The larger that SPREAD is the smoother the function approximation
% will be. Too large a spread means a lot of neurons will be
% required to fit a fast changing function. Too small a spread
% means many neurons will be required to fit a smooth function,
% and the network may not generalize well. Call NEWRB with
% different spreads to find the best value for a given problem.



Demo: spreads are too smallDemo: spreads are too small Demo: spreads are too largeDemo: spreads are too large RBF training for weights, centers and spreads RBF training for weights, centers and spreads 
using gradient descentusing gradient descent

Some tricks on RBF NN trainingSome tricks on RBF NN training

Training for centers and spreads is 
apparently very slow.
So some have taken the approach of 
computing these parameters by other 
means and just training for the weights (at 
most).

Solving approach for RBF NNSolving approach for RBF NN

Assume the spreads are fixed.
Choose the N data points themselves as 
centers.
It remains to find the weights.
Define ϕji = ϕ(|| xi -xj ||) where ϕ is the 
radial basis function, xi, xj are training 
samples.
The matrix Φ of values ϕji is called the 
interpolation matrix.



Solving approach for RBF NNSolving approach for RBF NN

The interpolation matrix has the property 
that 
Φw = d where

w is the weight vector
d is the desired output vector over all 

training samples (since the samples are 
both data points and centers).
If Φ is non-singular, then we can solve for 
weights as w = Φ-1 d

BiasBias--Variance dilemma Variance dilemma 
or how to choose the numbersor how to choose the numbers

Two devils: approximation error vs. Two devils: approximation error vs. 
overfitting overfitting on training seton training set
Reason for Reason for overfittingoverfitting: too large model does : too large model does 
not get an ability to generalizenot get an ability to generalize
How to discover this: while moving from How to discover this: while moving from 
training to testing settraining to testing set
Errors do increase but should not too muchErrors do increase but should not too much

Selecting centers by clusteringSelecting centers by clustering

One center per 
training sample may 
be overkill.
There are ways to 
select centers as 
representatives 
among clusters, given 
say a fixed number of 
representatives.

KK--means clusteringmeans clustering
This determines which points belong to which 
clusters, as well as the centers of those clusters. 
The desired number k of clusters is specified.
Initialize k centers, e.g. by choosing them to be k 
distinct data points.
Repeat

For each data point, determine which center 
is closest. This determines each point’s cluster 
for the current iteration.

Compute the centroid (mean) of the points in 
each cluster. Make this the centers for the next 
iteration.
until centers don’t differ appreciably from their 
previous value

KK--means clusteringmeans clustering
Tries to optimize the SSE 

of the difference 
between points and the 
center of their clusters.

This is a heuristic 
procedure, and is 
subject to the usual local 
minima pitfalls.

However, it is used quite 
often.

MLP vs RBF Case Studies
(source: Yampolskiy and Novikov, RIT)


