Topic3

Artificial neural networks:
Supernvised learning

Multilayer neural networks

Accelerated learning in multilayer neural networks

Multilayer perceptronwith two hidden layers

Inputs Arst Layer Seccnd Layer Third Layer

\ .J L
al=1p+) ats f o Wealsbi) at= f2(Wats b9
a2 = {2 (WF e (Wt 1 Waps B0 4 54)

Multilayer neural netwoerks

m A multilayer perceptron is a feedforward neural
network with one or more hidden layers.

m The network consists of an input layer of source
neurons, at least one middle or hidden layer of
computational neurons, and an output layer of
computational neurons.

m The input signals are propagated in a forward
direction on a layer-by-layer basis

What dees the middle layer hide?

m A hidden layer “hides” its desired output.
Neurons in the hidden layer cannot be observed

through the input/output behaviour of the network.

There is no obvious way to know what the desired
output of the hidden layer should be:

m Commercial ANNs incorporate three and
sometimes four layers, including one or two
hidden layers. Each layer can contain from 10 to
1000 neurons. Experimental neural networks may
have five or even six layers, including three or
four hidden layers, and utilise millions of neur

Multilayerneuralinetworks:

m Generally much more versatile than single neurons
—=No linear separability requirement. — ————
®m Training is less obvious and potentially more time
consuming. — = =
——=-Several-varieties, the most common-of-which is — ——
known as:
MLP (Multi-Level Perceptron)
Backpropagation Network (alluding to a common
method of training these networks; other training

—methodscould-conceivablybe used)———————

How to traina MEP?7=

— With a single neuron, it is not too hard to seehowto
adjust the weights based upon the error values:
With a multi-layer network, it is less obvious. For
— onething, what is the “error” for the neurons-in
nonfinal layers? Without these, we don’t know
how to adjust.

This is called the “credit assignment” problem
(maybe should be “blame assignment”).

Backpropagation:

Werbos, in his Harvard PhD thesis in 1974 found a
method.

Rumelhart and McClelland, in 1985 discovered the
method, presumably independently, and popularized it
under the current name.

In mathematics, such methods are in the category of
“optimization”

The technique is gradient descent, as for Adalines.

However, the computation of the gradient is less clear.

Three-layer back-propagation neural network

Output
layer

Error signals |

Back-propagation neural network

m [earning in @ multilayer network proceeds the
same way as for a perceptron.

m A training set of input patterns is presented to the
network.

m The network computes its output pattern, and if
there is an error — or in other words a difference
between actual and desired output patter:
weights are adjusted to reduce this error.

Backpropagation training cycle

Forward propagation: Derive the activation values (the inputs to the
activation functions) at each neuron, and the final output.

Compute the error in the output.

Backpropagate the error through the network to get “sensitivities”
at each neuron. (The gradient approximation is derivable from the

vities to derive weight changes.

t changes.

to the activation values.
Basically both are iterated matrix multiplications.

m [n a back-propagation neural network, the learning
algorithm has . two.phases.
A training input pattern is_presented to-the
network input layer. The network propagates the
- input pattern from layer to layer until the output
- pattern is generated by the output layer.
m [f this pattern is different from the desired output,
—an-erroris-calculated-and then-propagated
backwards through the network from the output
layerto-the-input-layer—The weights-are-modified
as the error is propagated.

ﬂBackprop agatlon
Given an input vector, can compute the outputs.
— Given a sample; can compute the errorsin output.—
Knowing gradient, can adjust the weights.
® Big Question: How to compute the gradient?
—Recall thatthe gradientconsistsof components A Aw——
where J is the mean-squared error and w is some weight
(or-bias)in-the network.
For the Adaline, already derived:
xi f’(n), where xi is the input
g ight wi, and n(net)isthe
ghted sum. This s as is for the multi-layer
case at the output layer.

[nside one neuron

"'y
Ll b

adlow, = (ad/fan) (an/ow,) chain rule
= (a(d-f(n))2/an) (anfaw,)
=-2¢f(n) X
=5 X

where s = (aJ/dn) is called the sensitivity

TThe back-propagation training algorithm

Step 1: Initialisation
Set all the weights and threshold levels of the
network to random numbers uniformly
distributed inside a small range:

24 24
_24 24
(K FI]

where F; is the total number of inputs of neuron i

in the network. The weight initialisation is done
on a neuron-by-neuron basis.

Backward propagation of sensitivity:

sensitivities Sensitivities
desired known
P —

Siep 2: Activation
Activate the back-propagation neural network by
applying inputs X, (), X,(p)s. .-, X,(p) and' desired
outputs Yq ;(P), Ya o (P):---» Y n(P)-

(a) Calculate the actual outputs of the neurons in
the hidden layer:

n

yj(p) = sigmoid | > x;j(p)-w;;(p) -0

i=1
where n is the number of inputs of neuron j in the
hidden layer, and sigmoid is the sigmoid activation
function.

Backward propagation of-sensitivity:

Express desired as a weighted sum of known:

s=1(n) Zws

weights
transposed
derivs
(diagonal

matrix)

L]

v
&= Fianmywnhys! |

| Vector Form for entire layer :

Step 2: Activation (continued)
(b) Calculate the actual outputs of the neurons in

— the output layer:

m
Y (p) = sigmoid | " X (P)- W j (p) - B
i=1
where m is the number of inputs of neuron K in the
output layer.

Step 3: Welght training
Update the weights in the back-propagation network
propagating backward the errors associated with
output neurons.
(a) Calculate the error gradient for the neurons in the
output layer:

k(P)= Yk (P)-[1- Vi (P)] € (P)

IS € (P) =Yg x(P)— Yk (P)

Calculate the weight corrections:

AwWj (p)=a-y;j(p)-ok(P)

Update the weights at the output neurons:

Wi (P+1) =Wk (p)+Awj, (p)

Threelayer network for solving the
Exclusive-OR operation

Output
layer

Hidden layer

Step 3: Weight training (continued)
(b). Calculate the error gradient for the neurons in
the hidden layer:

|
Si(P)=yj(P)-[1-yj(P] D Sk (P) W ()
k=1

Calculate the weight corrections:

Awii (p) = - Xi(P)-5(P)

Update the weights at the hidden neurons:

Wij (P +1) = wij (p) + Awj; (p)

m The effect of the threshold applied to a neuron in the
hidden or output layer is represented by its weight, 0.
connected to a fixed mput equal to —1.

m The initial weights and threshold levels are set
randomly as follows:

3 = 0.4, Wy, = 1.0, W5 = 1.2,
.1 and 65 =0.3.

Step4: Iteration
Increase iteration p by one, go back to Step 2 and
- repeat the process until the selected error criterion

— Asanexample, we may-considerthe three-layer——
back-propagation network. Suppose that the
network is required to perform logical operation

= Exelusive-OR-Recall-thata-single-layer-perceptron—
could not do this operation. Now we will apply the
three-layernet.

m- We consider a training set where inputs X, and X, are
equal'to 1 and' desired output y, 5 is 0. The actual

- outputs-of-neurons-3-and 4-in-the hidden layer are
= calculated as

y3 = sigmoid (x;Wj3 + XpWp3 —603) = 1/[1+e'<1'°'5+1'°'4'1’°'8)] =0.5250
Y = Sigmoid (X;Wy4 + XoWoy —64) =1 /[I + e*““’-"’”'l-o“'o-‘)] =0.8808

u Now:the actual output of neuron 5-in the output layer
is determined as:

Vs = SigMOIC(YsWis + YoWgs—O5) = 1/[1+9{4).52501,2+0.88081.1—140.3)] ~0.5097

m Thus, the following error is obtained:
e=Y45—Ys =0-0.5097 =—0.5097

m The next step is weight training. To update the
weights and threshold levels in our network, we
propagate the error, €, from the output layer
backward to the input layer.

m First, we calculate the error gradient for neuron 5 in
the output layer:

5097 -(1-0.5097)- (~0.5097) = —0.1274

hen we determine the weight corrections assuming
that the learning rate parameter, o, is equal to 0.1:
AWss =a Y3+ J5 =0.1-0.5250- (=0.1274) = -0.0067
AWys =0y, -05=0.1-0.8808-(-0.1274) =-0.0112

m Next we calculate the error gradients for neurons 3
and 4 in the hidden layer:

8y = Y3(1-¥3)- 85 - Wys = 0.5250- (1-0.5250)- (—0.1274)-(~1.2) = 0.0381
54 = Ya(l—y4)- 55 - Wys = 0.8808-(1—0.8808)-(—0.127 4)-1.1=—0.0147

m We then determine the weight correctior

AWz =a-% -85 =0.1-1-0.0381 = 0.0038
AWyy =a-Xp -85 =0.1-1-0.0381 = 0.0038

AB; =a-(~1)-5; =0.1-(=1)-0.0381 = —0.0038
AWy =X 54 =0.1-1-(=0.0147) = 0.0015
AWy =X -84 =0.1-1-(=0.0147) = —0.0015
A8y =a-(~1)-54 =0.1-(=1)-(~0.0147) = 0.0015

m At last, we update all weights and threshold:

Wy3 = W3+ Awys = 0.5+0.0038 = 0.5038
Wig = Wyg + AWy, =0.9-0.0015 = 0.8985
Wa3 = Wp3 +Awyy =0.4+0.0038 = 0.4038
Wy =Way + AWy, =1.0-0.0015 = 0.9985
Wys = Was + Awys = —1.2-0.0067 = —1.2067
W5 = Wys + Awys =1.1-0.0112 =1.0888

65 =05+A0; =0.8-0.0038 =0.7962
04=0,+A0, =—0.1+0.0015 = ~0.0985
05=05+A05=03+0.0127 =0.3127

m The fraining process is repeated until the sum of

ABs=a-(~1)- 85 =0.1-(—1)-(-0.1274) = -0.0127 squared errors is less than 0.001.

L earning curvefor operation Exclusive-OR

Sum-Squared Network Error for 224 Epochs

= Network-represented by-McCulloch=Pitts mode=—
for solving the Exclusive-OR operation

Final resulits of three-layer network learning

Desired
output

Sum-Squared Error

Deciision boundaries

X2 X2
[+x-15=0 |

[X +%-05=0 |

(a) Decision boundary constructed by hidden neuron 3;

(b) Decision boundary constructed by hidden neuron 4;

(c) Decision boundaries constructed by the complete
three-layer network

L earning with mementum for operation Exclusive-OR

Training for 126 Epochs

Sum-Squared Error

Learning Rate

Acceleratedlearning in mulitilayer
neural networks
—m-A-multilayer network learns-much-faster when-the

sigmoidal activation function is represented by a
hyperbolic tangent:

where a and b are constants.

Suitable values for a and b are:
a=1.716 and b = 0.667

L earningwith adaptive learning rate

To accelerate the convergence and yet avoid the
danger of instability, we can apply two heuristics:

Heuristic 1
If the change of the sum of squared errors has the same
algebraic sign for several consequent epochs, then the
learning rate parameter, o, should be increased.
Heuristic 2
If the algebraic sign of the change of the sum of
squared errors alternates for several consequent
epochs, then the learning rate parameter, o, should be
decreased.

m We also can accelerate training by including a
momentum term in the delta rule:

B AW (P) = B-Awj (p—D+a-y;j(p)- 5k (P) B

¢ 315 a positive numl) < B <Tcalledthe
momentum constant. Typically, the momentum
constantis set £0-0.95.

This equation is called the generalised delta rule.

m Adapting the learning rate requires some changes
in the back-propagation algorithm.

— m [f'the sum-of squared errors-at the current epoch:
exceeds the previous value by more than a

- predefined ratio (typically-1.04); the learning rate
parameter is decreased (typically by multiplying
by 0.7)-and new weights and thresholds are
calculated.

m If the error is less than the previous one, the
learning rate is increased (typically by multiplying
by 1.0

L earningwith adaptive learning rrate

Training for 103 Epochs

Sum-Squared Error

Learning Rate

Technigue and tricks

m * Normalize the inputs
— Better if mean of a particular variable is near 0.

* Then weight changes are less likely to be
synchronized, since some will be positive, others
negative.

» Therefore, subtract the actual mean from the
variable before training.

— Better if the variables are scaled to have similar
auto-covariances, defined as (sum-of-squares of
variable)/(number of samples)

* Then the weights will learn at similar rates.

» Exception: When some variables are known in
advance to be of less significa

L earning with mementum and adaptive learning rate

Training for 85 Epochs

ERCRCRC)

Sum-Squared Error

Learning Rate

Technigue and tricks

m * Decorrelate the inputs
— Better if no two input variables are
correlated.
— Correlated inputs analogous to having
linearly dependent variables in a linear system.
— A technique called PCA (Principal
Components Analysis), aka Karhunen-Loeve
Expansion, can be used to remove linear
correlations.
— We will look at PCA later; PCA itself can be
done by a PCA neural network.

BackProp Technique & Tricks
(Some of these apply to General
Neural Networks)

— (Two References: Neural Networks Tricksof the
Trade, Orr and Muller, eds.
_http://www.dontveter.com/bpr/bpr.html) —
— = *Choose examples with maximum informati
content
— Shuffle the training set so that successive
samples rarely belong to the same cla

— Present input examples that produce a large error

more frequently than ones that p: e :

Summary: of input normalization.

subtract

means

based on 2nd derivatives.

Technigue and tricks

m + Prefer tansig (hyperbolic tangent) rather than
logsig for inner layers.
— tansig output is symmetric about origin,
logsig is not.
— tansig will more likely produce outputs close
to 0 for the next stage of the network

m + Some recommend adding a small linear
constant to the output of tansig to “avoid flat
spots”

m Piecewise quadratic approximation to tanh

Learning rates

m « [deally, each weight should have its own learning

rate. See the Neural Networks Tricks of the Trade, Orr

and Muller, eds., for how to choose learning rate

m * As a substitute, each neuron, or each layer could
have its own learning rate.

m ¢+ Learning rates should be proportional to the sqrt of
the number of inputs to the neuron.

m « Weights in earlier layersshould belarger than
those in later layers, since the earlier layers tend to
have a smaller 2nd derivative of the MSE.

Choice of target values

m + Choosing target values of +1, -1 for a tansig causes

the neuron to be driven toward the saturation region.
* To get into this region, the weights are large and
may become “‘stuck” because small gradient values
will not change them sufficiently.

« It may be better to choose the tar gets offset from
these saturation values, or to scale the tansig to get the
same effect, e.g. f(x) = 1.7159 tanh(2x/3), which has
a maximum 2nd derivative where the function’s value

Validation Technique (“Cross-
Validation”)
& Early Stopping

» Split the training set into training and validation
subsets, e.g. 2:1 or 5:1 ratio.
* Train only on the training subset; use the validation
set for MSE, every so often (e.g. every 5 epochs).
« For early stopping: Stop training as soon asthe
validation error goesup.
* Use the weights before the error went up.

* Rational: Even though a lower minimum might
have been reached, the local minima tend to be fairly
close in value in practice.

~ Weight initralizatien

m *» Assuming that the training set has been
normalized and the previous sigmoid isused,
m * Draw the initial weights from a distribution,
— such as a uniform distribution, with mean 0 and
—standard deviation T/sqrt(m)y-wherem is thee ——
fan-in (number of inputs to the node).
—m « Increases likelihood that the inputtothe ———
sigmoid will have a standard deviation of 1

(since the latteris the sqrt of the sum of the

squares of the weights, for normalized input).

Over-fitting

—m et is possiblefor a network to over-fitthe data,
meaning that it learns small variations in the data
_which might actually be due to noise. —
] other way of saying this is that the network
does not generalize well; it is too-specialized.
m -+ Validation is one technique used to help avoid
over-fitting.
=+ Over-fitting can result if the network hastoo
many neuronsat its disposal.

Sizing a network Neurons Doubling

m + Given a problem: m + Choose number of neurons based on the assessed u + Start with il ber of = it
— How many layers? complexity within a layer (number of crests and valleys of) Al R ST DT O N T G R
— How many neurons per layer? Bl ction. forgnDI o s lyag, —— =
BNt activatio Enction m * Two approaches for experimental determination: m + [f at the conclusion of a training cycle, the
* Theoretically, any function can be emulated over a B = e e prnc - MSEis inadequate, repeat with double the
given range by a network with just one hidden layer — Start with a small number of neurons and build up. — mumberof neurons—— ————— =
and one output layer (two layers total), with sufficient m + Negligible weights can be eliminated (set to 0).
neurons in that layer. m < [fall input weights to a node are 0, the node can be
* Practically, 2-3 layers suffice for large families of eliminated.
problems, although more may be used, especially when m « If all weights a node feeds are 0, the node itself can be
special feature-selection layers are used, as in the zip- eliminated.

code recognition network. . ’ s o o
code recognition netwo m « Vary weights w to see whether AJ / Aw is significant; if

not, prune the weight.

Number off training samples

» Baum-Hausler rule (1989):
Necessary condition:

_ (number of samples) > W /(1-a) N
where W is the number of weights in the

network and a is the desired accuracy on the
test set.

« Sufficient condition:
(number of samples) > log(N / (1-a)) * W/(1-a)
where N is the number of neurons.

