Topic 2

Artificial neural networks:
Supervised learning

- Introduction, or applications
- Introduction , or how the brain works
- The neuron as a simple computing element
- The perceptron
- The ADALINE
- Note: lecture notes by M.Negnevitsky (U of

Tasmania, Australia) and Bob Keller (Harvey Mudd
College, CA) are used

ANN applications

- Optical character recognition
U.S. mail zip-code recognizer

Kanjii: 4000 chars in 15 fonts, 99% accurate, 100 k chars/sec (Sharp
\&Mitsubishi) \&Mitsubishi)

- Communications

Adaptive noise cancellation
Headphones
Conference telephones
Process control
Electric arc furnace control: 30MVA,50kamp transformer, \$2M savings
Steel-rolling mill controller
Copier uniformity control (Ricoh)
Anti-lock brakes, etc. (Ford)
Food process control (M\&M)

ANN applications

- Financial analysis

Prediction of commodities market (18% vs 12.3% by traditional methods)
Mortgage risk evaluator (AVCO, Irvine)
Real-estate evalution (Foster Onsley Conley)
Portfolio management (LBS Captial)
Currency trading (Citibank)

- Crime prevention

Bomb sniffer (JFK airport)
Credit card fraud detection (Visa, etc.)

ANN applications

- Object classification

Grading grains from video images
Forensics: glass classification
High-energy physics: particle identification Warfare
Missile guidance

- Optical telescope focusing
- Biomedical

Clinical diagnoses
Patient mortality predictions
Protein structure analysis
Electrode placement

Approaches to AI

- Reverse Engineering of Biology

Understand real neurons well enough to model
Simulate neural behavior

- Simulated Evolution

Provide basic evolutionary mechanism for neurons
Evolve intelligent behavior

- Artificial Neural Networks

Develop a parameterized model for a class of problems
Learn the parameters

Introduction, or how the brain works

Machine learning involves adaptive mechanisms that enable computers to learn from experience, learn by example and learn by analogy. Learning capabilities can improve the performance of an intelligent system over time. The most popular approaches to machine learning are artificial neural networks and genetic algorithms. This lecture is dedicated to neural networks.

- A neural network can be defined as a model of reasoning based on the human brain. The brain consists of a densely interconnected set of nerve cells, or basic information-processing units, called neurons.
- The human brain incorporates nearly 10 billion neurons and 60 trillion connections, synapses, between them. By using multiple neurons simultaneously, the brain can perform its functions much faster than the fastest computers in existence today.

Biological Intelligence

- Intelligence, the ability to make decisions based upon input from the environment
- Intelligence is realized by a network of neurons, for example the brain and the ttendant sensory and motor neurons.
Each neuron has a very simple structure, but an army Each neuron has a very simple structure, but an army
of such elements constitutes a tremendous processing of such elements constitutes a tremendous processing power.
- A neuron consists of a cell body, soma, a number of fibers called dendrites, and a single long fiber called the axon.

Biological neural network

- Our brain can be considered as a highly complex

Natural NN: characterisitics

- Human nervous systems accounts for $1-2 \%$ of
body's weight BUT consumes 25% of body's energy
- Switching speed $\sim 1 \mathrm{kHZ}$ (1 million times slower than a computer)
- Conduction speed $\sim 100 \mathrm{~m} / \mathrm{s}$ (vs. near light speed in a computer)
- Switching energy ~ 10^{-16} Joules/op (vs. 10^{-5} joules/op for today's computers)

Natural NN: characterisitics

- Human estimated to have 1010-1011
neurons.
- One neuron may connect to 102 -103 others.
- Therefore 1012-1014 connections are present.
- An artificial neural network consists of a number of very simple processors, also called neurons, which are analogous to the biological neurons in the brain
- The neurons are connected by weighted links passing signals from one neuron to another.
- The output signal is transmitted through the neuron's outgoing connection. The outgoing connection splits into a number of branches that transmit the same signal. The outgoing branches terminate at the incoming connections of other neurons in the network.

Architecture of a typical artificial neural network

Analogy between biological and artificial neural networks

Biological Neural Network	Artificial Neural Network
Soma	Neuron
Dendrite	Input
Axon	Output
Synapse	Weight

Fundamental problems for a given neural model

- How to represent information?
- How to characterize the computational capability of the model?
- How to achieve learning in the model?

The neuron as a simple computing element
Diagram of a neuron

The neuron computes the weighted sum of the input signals and compares the result with a threshold value, θ. If the net input is less than the threshold, the neuron output is -1 . But if the net input is greater than or equal to the threshold, the neuron becomes activated and its output attains a value +1 .

- The neuron uses the following transfer or activation function:

$$
X=\sum_{i=1}^{n} x_{i} w_{i} \quad Y=\left\{\begin{array}{l}
+1, \text { if } X \geq \theta \\
-1, \text { if } X<\theta
\end{array}\right.
$$

- This type of activation function is called a sign function.

Activation functions of a neuron

| Step function | Sign function | Sigmoid function | Linear function |
| :--- | :--- | :--- | :--- | :--- |

Can a single neuron learn a task?

- In 1958, Frank Rosenblatt introduced a training algorithm that provided the first procedure for training a simple ANN: a perceptron.
- The perceptron is the simplest form of a neura network. It consists of a single neuron with adjustable synaptic weights and a hard limiter.

Single-layer two-input perceptron

The Perceptrion

- The operation of Rosenblatt's perceptron is based on the McCulloch and Pitts neuron model. The model consists of a linear combiner followed by a hard limiter.
- The weighted sum of the inputs is applied to the hard limiter, which produces an output equal to +1 if its input is positive and -1 if it is negative.
- The aim of the perceptron is to classify inputs, $x_{1}, x_{2}, \ldots, x_{n}$, into one of two classes, say
\boldsymbol{A}_{1} and \boldsymbol{A}_{2}
- In the case of an elementary perceptron, the ndimensional space is divided by a hyperplane into two decision regions. The hyperplane is defined by the linearly separable function:

Linear separability in the perceptrons

(a) Two-input perceptron.

(b) Three-input perceptron.

Separating Hyperplane

- The equation $\mathrm{w}_{1} \mathrm{x}_{1}+\mathrm{w}_{2} \mathrm{x}_{2}+\ldots+\mathrm{w}_{\mathrm{n}} \mathrm{x}_{\mathrm{n}}=\theta$
defines a hyperplane in n-space
- If such a hyperplane exists classification problem, the problem called linearlyseparable.

Perceptron summary

- A perceptron can solve a classification problem if the problem is linearly separable.
- There are problems a single perceptron cannot solve.
- Perhaps the simplest unsolvable one is the XOR problem:
yes: $\{(0,1),(1,0)\}$, no: $\{(0,0),(1,1)\}$

How does the perceptron learn its classification tasks?

This is done by making small adjustments in the weights to reduce the difference between the actual and desired outputs of the perceptron. The initial weights are randomly assigned, usually in the range [$-0.5,0.5$], and then updated to obtain the output consistent with the training examples.

- If at iteration p, the actual output is $Y(p)$ and the desired output is $Y_{d}(p)$, then the error is given by

$$
e(p)=Y_{d}(p)-Y(p) \quad \text { where } p=1,2,3 \text {, }
$$

Iteration p here refers to the p th training example presented to the perceptron.

- If the error, $e(p)$, is positive, we need to increase perceptron output $Y(p)$, but if it is negative, we need to decrease $Y(p)$.

The perceptron learning rule

$w_{i}(p+1)=w_{i}(p)+\eta \cdot x_{i}(p) \cdot e(p)$

where $p=1,2,3$,
η is the learning rate, a positive constant less than unity.

The perceptron learning rule was first proposed by Rosenblatt in 1960. Using this rule we can derive the perceptron training algorithm for classification tasks.

Learning rate η

- η governs the rate at which the training rule converges toward the correct solution.
- Typically $\eta<1$.

Too small an η produces slow convergence.

- Too large of an η can cause oscillations in the process.

Perceptron's training algorithm

Step 1: Initialisation
Set initial weights $w_{1}, w_{2}, \ldots, w_{n}$ and threshold θ to random numbers in the range $[-0.5,0.5]$.

If the error, $e(p)$, is positive, we need to increase perceptron output $Y(p)$, but if it is negative, we need to decrease $Y(p)$.

Perceptron's training algorithm (continued)

Step 2: Activation
Activate the perceptron by applying inputs $x_{1}(p)$,
$x_{2}(p), \ldots, x_{n}(p)$ and desired output $Y_{d}(p$
Calculate the actual output at iteration $p=1$

$$
Y(p)=\operatorname{step}\left[\sum_{i=1}^{n} x_{i}(p) w_{i}(p)-\theta\right]
$$

where n is the number of the perceptron inputs, and step is a step activation function.

Perceptron's training algorithm (continued)
Step 3: Weight training
Update the weights of the perceptron

$w_{i}(p+1)=w_{i}(p)+\Delta w_{i}(p)$

where $\Delta w_{i}(p)$ is the weight correction at iteration p. The weight correction is computed by the delta
rule:
$\Delta w_{i}(p)=\alpha \cdot x_{i}(p) \cdot e(p)$

Step 4: Iteration

Increase iteration p by one, go back to Step 2 and
repeat the process until convergence

Two-dimensional plots of basic logical operations

(b) $O R\left(x_{1} \cup x_{2}\right)$

A perceptron can learn the operations AND and OR but not Exclusive-OR.

Perceptron training algorithm modifications for practical usage

- Put a limit on the number of iterations, so that the algorithm will terminate even if the sample set is not linearly separable.
- Include an error bound as an extra input. The algorithm can stop as soon as the portion of misclassified samples is less than this bound (as opposed to requiring perfect classification which would be an error bound of 0).
- Generate the initial weights randomly, so that the user does not have to specify them.

Perceptron training algorithm modifications for practical usage

- Don't require the user to specify the learning rate.
- Instead, vary it so that the chosen sample is always correctly classified after weight modification (although other samples may become incorrectly classified).
We want to change the weight vector so that vector adding $\Delta w=\varepsilon \eta[-1, x 1, x 2$ xn] causes
(Σ wi xi >0) to become 0 .
Effectively choosing η to be just larger than $|w x| /|x x|$ (where the products are vector inner products) will guarantee this, since

Some problems about perceptron
training

- When a perceptron gives the right answer, no learning takes place.
- Anything below the threshold is interpreted as "no", even if it just below the threshold.
- Might it be better to train the neuron based on how far below the threshold it is?
- This idea is developed in the Adaline training algorithm.

ADALINE

- The Adaline (Adaptive Linear Neuron or Adaptive Linear Element) is a model similar to the Perceptron. There are several variations:
lOne has the threshold function similar to a perceptron.
- Another uses a pure linear function with no threshold

Bernard Widrow,
Professor Emeritus of E.E.
Stanford University

Adaline inventors

Marcian Hoff
Co-inventor of Patent 3,821,715 Microprocessor Concept and Architecture

Adaline Training

With or without the threshold, the Adaline is trained based on the output of the linear function rather than the final output.

Adaline Training

- The catch here is that we have to state
the desired value in terms of the output of the linear part, rather than the output after the threshold.
- What is this for a classifier?

Adaline Training

- The weight update formula for the Adaline will be justified eventually.
- One major difference from this vs. the Perceptron is that a learning rate of 1 won't generally be acceptable. It will need to be smaller, say 0.01. There is a theory that tells us how large we can make it.

Adaline Training

- A reasonable approach is to use a nominal value such as -0.5 as desired for a "no" classification and a +0.5 for a "yes" classification.

Adaline Training

- The formula for Adaline weight updating is very similar to the Perceptron: Add to the weights $\Delta \mathrm{W}$ where

$$
\Delta W=\varepsilon \eta\left[-1, X_{1}, X_{2}, \ldots, X_{n}\right]
$$

only now the error is not limited to 1 $-1,0$ as before; it can have a fractional value, since it is based on the output of the linear part of the device.

Adaline convergence

- The Adaline admits a more refined stopping criterion:
The Mean-Squared Error (MSE) is the average of the squares of the error taken over all samples. Squaring makes the measure insensitive to the sign of the error. It also provides certain analytic properties.
- This quantity ideally converges toward a specific minimum (which might never be exactly attained). The algorithm can be set to stop when the MSE reaches a

Alternate rule names

- Because the Adaline rule minimizes MSE, it is sometimes called the "LMS rule" [LMS = "least mean square"].
- The term "Delta rule" is also sometimes used, although this will be seen to be a rule for a more general class of networks.

Minimizing error

- Consider the task of finding the minimum of a function of one variable.
- One standard method for doing this, if the derivative of the function is known, is Newton's method, which entails constructing a tangent line from a current estimate, then using the intersection of the line with the origin for the next.

Gradient descent

- Gradient descent is another method for finding the minimum.
- It consists of computing the gradient of the function, then taking a small step in the direction of negative gradient, which hopefully corresponds to decreased function value, then repeating for the new value of the dependent variable.
- A single dimension for weights (including bias) is atypical.
- For the general case, the gradient is a vector of gradient components, one for each weight (including bias).

Gradient Descent

weight

On-line approximation to gradient

> - On-line means based on a single
> sample, rather than batch, which means using all samples
> $J \approx\left(d-\Sigma W_{i} x_{i}\right)^{2} \quad\left(\begin{array}{c}\text { note: } \\ (d=d e ~ o u t e r ~ s u m) ~\end{array}\right.$
> - $J \approx\left(d-\Sigma w_{j} x_{j}\right)^{2} \quad(d=$ desired $)$
> - $i^{\text {th }}$ gradient component $=\partial \mathrm{J} / \partial \mathrm{w}_{\mathrm{i}}$
> $=\partial / \partial w_{i}\left(d-\Sigma w_{j} x_{j}\right)^{2}$
> $=2\left(d-\Sigma w_{j} x_{j}\right) \partial / \partial w_{i}\left(d-\Sigma w_{j} x_{j}\right)=-2 \varepsilon x_{i}$

- MSE $=\mathrm{J}(\mathrm{w})=\Sigma(\text { desired-actual })^{2} / n$ where Σ is over n samples
- desired is a fixed constant for each
- actual $=\Sigma \mathrm{w}_{\mathrm{j}} \mathrm{X}_{\mathrm{j}}$ (Σ over input lines)
-So $J(w)=\Sigma\left(\text { desired }-\Sigma w_{j} x_{j}\right)^{2 / n}$

Computing gradients

$-\mathrm{i}^{\text {th }}$ gradient component $=-2 \varepsilon \mathrm{X}_{\mathrm{i}}$

- However we want to move in the direction of negative gradient, tempered by the learning rate η, so:

Amount to add to weight is

 $\Delta W_{i}=2 \varepsilon \eta X_{i}$which we recognize as the LMS (Adaline) rule (2 can be folded into η).

Vector version

$=E\left[d^{2}-2 d w^{\top} x+w^{\top} x x^{\top} w\right]$
$=E\left[d^{2}\right]-E\left[2 d w^{\top} x\right]+E\left[w^{\top} \times x^{\top} w\right]$
$=E\left[d^{2}\right]-2 w^{\top} E[d x]+w^{\top} E\left[x \times{ }^{\top}\right] w$
$=\mathrm{c}-2 \mathrm{w}^{\top} \mathrm{h}+\mathrm{w}^{\top} \mathrm{R} \mathrm{w}$. for appropriate const. c. h, R

- $J(w)$ is a quadratic form in w with coefficients derived from the data vectors x
- R is called the auto-correlation matrix

Analytic gradient

$-\nabla J(w)=\nabla\left(c+w^{\top} b+(1 / 2) w^{\top} A w\right)=$ $b+A w$

$b+A w$

- It can be shown that if J has a minimum, it will be at a point w^{*} where $\nabla J\left(\mathrm{w}^{*}\right)=0$, i.e. $b+A w^{-}=0$
where $\mathrm{A}=2 \mathrm{E}\left[\mathrm{x} \mathrm{x}^{\top}\right], \mathrm{b}=-2 \mathrm{E}[\mathrm{dx}]$
- In general, $\mathrm{w}^{*}=\mathrm{A}^{-1} \mathrm{~b}$ is a stable point
- It may correspond to a minimum, maximum, or saddle

Generalizing Adaline

- Suppose that we replace the threshold stage with a general function f and revert to expressing desired in terms of its output:

Generalized LMS rule

(or Delta rule)

- $\Delta w=2$ e $\eta f^{\prime}\left(\Sigma w_{i} x_{i}\right) x_{i}$ assuming that f has a derivative f '.
- $\Sigma w_{i} x_{i}$ is often called the "net" value or "activation" value, and f the activation function.
- For the special case of f being the identity function, this reduces to the LMS rule we function, thi
- Why worry about this generalization?
- It will have a number important uses.

Use \#1

- In the Adaline with threshold, we can't very well treat the model analytically, due to the fact that we have a noncontinuous function at the output.
- But we can approximate the noncontinuous function with a continuous one:

Sigmoids

