# Polynomial Time Complexity

Theory of Computer Algorithms Jake Clements April 21, 2005

```
Adding Problem

Add(Integer n) {

Integer sum=0;

for i=1 to n DO {

sum=sum+1;

}

}

O(n) = Linear = Polynomial of degree 1
```

# Halting Problem Halt (Program A, input x) { If A(x) halts { print("Good program"); } else { print("Bad program"); } }

# Adding Problem Revised

Add(Integer n) { Integer sum=0; while(n<0) {} for i=1 to n DO { sum=sum+1; } }

## Definitions

- A problem must have a deterministic algorithm that *decides* it
- The algorithm must be able to be represented by some polynomial expression in terms of the problem size
- The algorithm has polynomial time complexity
- The problem is polynomial time complete



### Complexity Classes

- P the class of decision problems that can be solved on a deterministic sequential machine in polynomial time
- NP the class of decision problems that can be solved in polynomial time on a nondeterministic Turing machine

### Polynomial vs. Exponential

|                 | 1 | 10   | 100  | 1000  |
|-----------------|---|------|------|-------|
| n²              | 1 | 1E2  | 1E4  | 1E6   |
| n <sup>3</sup>  | 1 | 1E3  | 1E6  | 1E9   |
| n⁵              | 1 | 1E5  | 1E10 | 1E15  |
| n <sup>10</sup> | 1 | 1E10 | 1E20 | 1E30  |
| 2 <sup>n</sup>  | 2 | 1E3  | 1E30 | 1E301 |

#### References

- Sipser, Michael. <u>Introduction to the Theory of</u> <u>Computation.</u> PWS Publishing Company, 1997.
- <u>http://en.wikipedia.org/wiki/Polynomial\_time</u>

# Polynomial Time Algorithms

Ray Wallace

## Classes of Time Complexity

- Polynomial Time (P)
- Non-Polynomial Time (NP)
- NP-Complete (NPC)

### What's it Mean?

The class of Polynomial-Time algorithms is "all those decision problems that can be solved on a deterministic sequential machine in an amount of time that is polynomial in the size of the input"

\* Wikipedia, entry for "Complexity classes P and NP"





- log(n) space complexity: L
  - ${}^{\square} L \subset P$
- Polynomial space complexity: PSPACE
   □ P ⊂ PSPACE
- Non-Polynomial time complexity: NP
- □ ????

#### Oracle Machines

- Use NP problems in P algorithms
  - D Normal Turing machine plus an "oracle"
- Notation:
   P algorithm using an NP oracle:
  - P<sup>NP</sup> P algorithm using a Satisfiability oracle: P<sup>SAT</sup>

# References

- Introduction to Algorithms, Thomas H. Cormen, Charles E. Leiserson, Ronald Rivest
- www.csc.liv.ac.uk/~ped/teachadmin/algor/npcomp. html
- www.wikipedia.org entries for Complexity classes P and NP, Computational complexity theory, Oracle machine, etc.