
1

HeapsortHeapsort

 Submitted by :

 Hardik Parikh(hjp0608)
 Soujanya Soni (sxs3298)

• Heap Definition.
• Adding a Node.
• Removing a Node.
• Array Implementation.
• Analysis

Overview of PresentationOverview of Presentation

What is Heap?

A Heap is a Binary Tree H that stores a
collection of keys at its internal nodes and that
satisfies two additional properties:

• Relational Property

• Structural Property

Heap PropertiesHeap Properties

•Heap-Order Property (Relational):
In a heap H, for every node n (except the root), the key stored in n is

smaller than or equal to the key stored in n ’s parent. (a Min-Heap)
so A (i) <= A (parent [i])

•Complete Binary Tree (Structural):
A Binary Tree T is complete if each level but the last is full, and, in the
last level, all of the internal nodes are to the left of the external nodes.

Two Basic Procedure on Heap

1. Heapify : Maintaining property of Heap
2. Build Heap:Construction of the Heap from

the list of number.

Building a HeapBuilding a Heap

1. All leaf
nodes occur
at adjacent
levels.

When a complete
binary tree is built,

its first node must be
the root.

When a complete
binary tree is built,

its first node must be
the root.

Root

2

Building a HeapBuilding a Heap

2. All levels of
the tree, except
for the bottom
level are
completely filled.
All nodes on the
bottom level
occur as far left
as possible.

Left child
of the
root

The second node is
always the left child

of the root.

The second node is
always the left child

of the root.

Building a HeapBuilding a Heap

3. The key of
the root node
is greater than
or equal to the
key of each
child. Each
subtree is also
a heap.

Right child
of the

root

The third node is
always the right child

of the root.

The third node is
always the right child

of the root.

Adding a Node to a HeapAdding a Node to a Heap

� Put the new
node in the next
available spot.

19

4222127

23

45

35

42

Adding a Node to a HeapAdding a Node to a Heap
�Push the new

node upward,
swapping with its
parent until the
new node reaches
an acceptable
location. 19

4222142

23

45

35

27

Adding a Node to a HeapAdding a Node to a Heap

�Push the new
node upward,
swapping with its
parent until the
new node reaches
an acceptable
location. 19

4222135

23

45

42

27

Adding a Node to a HeapAdding a Node to a Heap

�The parent has a key
that is >= new node, or
�The node reaches the

root.
ÀThe process of pushing

the new node upward
is called
reheapification
upward.

19

4222135

23

45

42

27

3

Removing the Top of a HeapRemoving the Top of a Heap

�Move the last
node onto the root.

19

4222135

23

45

42

27

Removing the Top of a HeapRemoving the Top of a Heap

�Move the last
node onto the root.

19

4222135

23

27

42

Removing the Top of a HeapRemoving the Top of a Heap

�Push the out-of-
place node
downward,
swapping with its
larger child until
the new node
reaches an
acceptable location.

19

4222135

23

27

42

Removing the Top of a HeapRemoving the Top of a Heap
�Push the out-of-

place node
downward,
swapping with its
larger child until
the new node
reaches an
acceptable
location.

19

4222135

23

42

27

Removing the Top of a HeapRemoving the Top of a Heap
�Push the out-of-

place node
downward, swapping
with its larger child
until the new node
reaches an
acceptable location. 19

4222127

23

42

35

Removing the Top of a HeapRemoving the Top of a Heap
�The children all

have keys <= the
out-of-place node,
or
�The node reaches

the leaf.
¾The process of

pushing the new
node downward is
called
reheapification
downward.

19

4222127

23

42

35

4

Implementing a Heap from An ArrayImplementing a Heap from An Array

• We will store the
data from the
nodes in a
partially-filled
array.

An array of dataAn array of data

2127

23

42

35

Implementing a HeapImplementing a Heap

• Data from the root
goes in the
first
location
of the
array.

An array of dataAn array of data

2127

23

42

35

42

Implementing a HeapImplementing a Heap

• Data from the
next row goes in
the next two
array locations.

An array of dataAn array of data

2127

23

42

35

42 35 23

Implementing a HeapImplementing a Heap

• Data from the next
row goes in the
next two array
locations.

• Any node’s two
children reside at
indexes (2n) and
(2n + 1) in the array.

An array of dataAn array of data

2127

23

42

35

42 35 23 27 21

Implementing a HeapImplementing a Heap

• Data from the
next row goes
in the next two
array locations.

An array of dataAn array of data

2127

23

42

35

42 35 23 27 21

We don't care what's inWe don't care what's in
this part of the array.this part of the array.

Important Points about the
Implementation

Important Points about the
Implementation

• The links between the tree's
nodes are not actually stored
as pointers, or in any other
way.

• The only way we "know" that
"the array is a tree" is from
the way we manipulate the
data.

An array of dataAn array of data

2127

23

42

35

42 35 23 27 21

5

Important Points about the
Implementation

Important Points about the
Implementation

• If you know the index
of a node, then it is
easy to figure out the
indexes of that node's
parent and children.

[1][1] [2] [3] [4] [5]

2127

23

42

35

42 35 23 27 21

Heap SortHeap Sort

Heap sort is the technique of sorting
the list of number using “Heap”.

Special about Heap sort

• The primary advantage of the heap sort is
its efficiency. The execution time efficiency
of the heap sort is O(n log n). The memory
efficiency of the heap sort, unlike the other
n log n sorts, is constant, O(1), because the
heap sort algorithm is not recursive.

Pseudocode for the heapsort algorithm
//Heapsort for the array called data with n elements
1. Convert the array of n elements into a heap.
2. unsorted = n; // The number of elements in the unsorted

side
3. while (unsorted > 1)
{ // Reduce the unsorted side by one

unsorted - -;
Swap data[0] with data [unsorted].
The unsorted side of the array is now a heap with the
root out of place.
Do a reheapification downward to turn the unsorted
side
back into a heap.

}

Analysis of Heapify-MethodAnalysis of Heapify-Method
If we put a value at root that is less than every value in the

left and right subtree, then 'Heapify' will be called
recursively until leaf is reached. To make recursive calls
traverse the longest path to a leaf, choose value that
make 'Heapify' always recurse on the left child. It follows
the left branch when left child is greater than or equal to
the right child, so putting 0 at the root and 1 at all other
nodes, for example, will accomplished this task. With
such values 'Heapify' will called h times, where h is the
heap height so its running time will be θ(h) (since each
call does (1) work), which is (lgn). Since we have a case
in which Heapify's running time (lg n), its worst-case
running time is Ω(lgn).

Analysis of Build Heap-MethodAnalysis of Build Heap-Method

• We can use the procedure 'Heapify' in a bottom-up fashion
to convert an array A[1 . . n] into a heap. Since the
elements in the subarray A[n/2 +1 . . n] are all leaves, the
procedure BUILD_HEAP goes through the remaining
nodes of the tree and runs 'Heapify' on each one. The
bottom-up order of processing node guarantees that the
subtree rooted at children are heap before 'Heapify' is run
at their parent.

• We can build a heap from an unordered array in linear time.

6

• if we can build a data structure from our list in
time X and

• if finding and removing the smallest object takes
time Y then the total time will be O(X + n Y).

• In our case X will be 0(n) and Y will be O (log n)
so,
total time will be O (n + n log n) = O (n log n)

Analysis of HeapsortAnalysis of Heapsort

Heapsort Algorithm consists of a few steps:
• Build Heap – runs in linear time O (n)

– • produces a Heap from an unordered input array
– • A bottom up process starting at node and working back to top

• Heapify – runs in O (log n) time
– • maintains the heap property/manipulates Heaps
– • Heapify is a top down process

• Heapsort – then runs in O (n log n) time
– • sorts an array, in place

• Extract Min and Insert (a new key)
– • each runs in O (log n) time
– • allows the heap data structure to be used as a priority queue.

Analysis of Heapsort(Cont’d)Analysis of Heapsort(Cont’d)

• http://www.cs.uml.edu/~tom/404/notes/6_Hea
psort.pdf

• http://www.personal.kent.edu/~rmuhamma/Al
gorithms/MyAlgorithms/Sorting/heapSort.htm

• http://nova.umuc.edu/~jarc/idsv/lesson3.html
• “Introduction to Algorithms” by Corman,

Leiserson, Rivest ,Stein.

References References

?
QuestionsQuestions

