
1

String Matching String Matching
AlgorithmsAlgorithms

By:By:--
ShiranchalShiranchal TanejaTaneja

sxt9088sxt9088

Talk about..Talk about..

1.1. IntroductionIntroduction
2.2. Naïve AlgorithmNaïve Algorithm
3.3. Overview of RabinOverview of Rabin--KarpKarp
4.4. Overview of KnuthOverview of Knuth--MorrisMorris--PrattPratt
5.5. Running timesRunning times
6.6. ReferencesReferences

IntroductionIntroduction

Why do we need string matching?Why do we need string matching?
String matching is used in almost all the software String matching is used in almost all the software
applications straddling from simple text editors to the applications straddling from simple text editors to the
complex NIDS. complex NIDS.
“Find and replace all” in text editors.“Find and replace all” in text editors.
Network Intrusion Detection Systems (Network Intrusion Detection Systems (NIDSsNIDSs))

Main functioning i.e. signature matching is based on string Main functioning i.e. signature matching is based on string
matching.matching.

Therefore, efficient string matching algorithms can Therefore, efficient string matching algorithms can
greatly reduce response time of these applicationsgreatly reduce response time of these applications

String matchingString matching

To find all occurrences of a pattern in a given To find all occurrences of a pattern in a given
text. text.
We can formalize the above statement by We can formalize the above statement by
saying: Find a given pattern p[1..m] in text saying: Find a given pattern p[1..m] in text
T[1..n] with n>=m.T[1..n] with n>=m.

*text is the string that we are searching.*text is the string that we are searching.
*pattern is the string that we are searching for.*pattern is the string that we are searching for.
*Shift is an offset into a string.*Shift is an offset into a string.

Naïve algorithmNaïve algorithm

Naïve algorithm finds all valid Naïve algorithm finds all valid
shifts using an iteration that shifts using an iteration that
compare pattern for each of the compare pattern for each of the
possible npossible n--m+1 values of shift.m+1 values of shift.

Naïve algorithmNaïve algorithm
It seems like sliding a “template” containing the pattern overIt seems like sliding a “template” containing the pattern over
the text, and looking for match.the text, and looking for match.

S = 0 S = 0

S = 1S = 1

S = 2S = 2

S = 3 S = 3

a cbca a

a ba

a cbca a

a ba

a cbca a

a ba

a cbca a

a ba

2

Naïve algorithmNaïve algorithm

NaiveEg.cNaiveEg.c
long long naivesearchnaivesearch (unsigned char *P, long M, unsigned char *T, (unsigned char *P, long M, unsigned char *T,

long N)long N)
{{ long long i,ji,j;;

for (i =0 ; i<= Nfor (i =0 ; i<= N--M; i++)M; i++)
{{ for (j=0; j<M; j++)for (j=0; j<M; j++)

{{ if (if (P[jP[j] !=] != T[iT[i + j]+ j] break;break; } }
if (j == m) return (i) ;if (j == m) return (i) ;

}}
return (return (--1);1);

}}
For each (nFor each (n--m+1) possible values of shift s, inner loop runs for M times. m+1) possible values of shift s, inner loop runs for M times.

Thus Thus
Θ Θ ((n((n--m+1)m)m+1)m) => => ΘΘ(n2)(n2)

Rabin Rabin –– Karp algorithmKarp algorithm

String matching algorithm that compares string’s String matching algorithm that compares string’s
hash values, rather than string themselves.hash values, rather than string themselves.
Performs well in practice, and generalized to Performs well in practice, and generalized to
other algorithm for related problems, such as other algorithm for related problems, such as
twotwo--dimensional pattern matching.dimensional pattern matching.
Worst case running time is O((nWorst case running time is O((n--m+1)*m”)m+1)*m”)
For efficiency, the hash value of the next For efficiency, the hash value of the next
position in the text is easily computed from the position in the text is easily computed from the
hash value of the current position.hash value of the current position.

Rabin Rabin -- Karp…Karp…ContdContd
Example of removing and shifting the elements of the Example of removing and shifting the elements of the
array.array.
Let T=“123456” and m =3Let T=“123456” and m =3
T(0) = 123T(0) = 123
First: remove the first digit: (123 First: remove the first digit: (123 –– 100*1) = 23100*1) = 23
Second: Multiply by 10 to shift it: 23*10 = 230Second: Multiply by 10 to shift it: 23*10 = 230
Third: Add last digit: 230 + 4 = 234, which is T(1)Third: Add last digit: 230 + 4 = 234, which is T(1)
The algorithm runs by comparing, t (s) with p. The algorithm runs by comparing, t (s) with p.

When When t(st(s) = p, then we have found the substring P in T, starting) = p, then we have found the substring P in T, starting
from position s.from position s.
Problem: Problem: t(st(s) and p may be too large, therefore no built) and p may be too large, therefore no built--in data in data
type can fit them.type can fit them.
Solution: All Solution: All t(st(s) and p be performed in modulo q.) and p be performed in modulo q.

KnuthKnuth--MorrisMorris--Pratt algorithmPratt algorithm
It ensures that a string search will not require more than N chaIt ensures that a string search will not require more than N character racter
comparison (once some precomparison (once some pre--computation is performed)computation is performed)
e.g. pattern “AAAB” is searched in “AAAXAAAAA”. e.g. pattern “AAAB” is searched in “AAAXAAAAA”.
Naïve algorithm will ok till “B” in the pattern fails to match Naïve algorithm will ok till “B” in the pattern fails to match the 4the 4thth

char of the text. At this point, it will shift the pattern by onchar of the text. At this point, it will shift the pattern by one position e position
and start over.and start over.
Looks Inefficient ? YesLooks Inefficient ? Yes
Because during the mismatch above, we learned some key Because during the mismatch above, we learned some key
information about the textinformation about the text-- because first three characters match because first three characters match
successfully. successfully.
We implicitly know what the first two character are of the next We implicitly know what the first two character are of the next
substring are, so we should not explicitly check them.substring are, so we should not explicitly check them.
KMP uses this information to reduce number of times it compares KMP uses this information to reduce number of times it compares
each character of text with character in pattern. each character of text with character in pattern.

KMP ….KMP ….contdcontd
The difficulty lies in figuring how far to skip when The difficulty lies in figuring how far to skip when
a mismatch occurs. The goal is to skip as far as a mismatch occurs. The goal is to skip as far as
possible without missing any potential matches.possible without missing any potential matches.
Trick here is to preTrick here is to pre--compute a table of skips for compute a table of skips for
each prefix ahead of time, so that at running each prefix ahead of time, so that at running
time, we immediately know how many chars to time, we immediately know how many chars to
skip.skip.
Note that this preNote that this pre--computation is based on computation is based on
entirely upon Pattern P, so the length of the text entirely upon Pattern P, so the length of the text
do not have any role to play in cost of predo not have any role to play in cost of pre--
computation.computation.

