String| Matehing
Algorithms

Tralk about..

Introduction
Naive: Algorithm

Overview of Rabin-Karp
Overview: of Knuth-Morris-Pratt
Running times
By:- References
Shiranchal Taneja
sxt9088

Intreduction String mateching

= \Why do we need!stringi matching? = o find allfeceurrences ofi a patterniin a given
= String matching is used in almost all' the software text.
applications straddling from simple text editors to the « We can formalize the above statement by

“co_mplex D= . saying: Find'a given pattern p[d..m] in text
« “Find and replace all” in text editors. T[2..n] with n>=m.

= Network Intrusion Detection Systems (NIDSs)
« Main functioning i.e. signature matching is based on string
matching. *text is the string that we are searching.

- Thersfors, sffidisnt S0y patsilg Ao ulsica) *pattern is the string that we are searching for.
greatly reduce response time of these applications A ; y
*Shift is an offset into a string.

Naive algorithm Naive algorithm

It seems like sliding a “template” containing the pattern over
the text, and looking for match

S=0

« Naive algorithm finds all valid Glglalalblel
shifts using an iteration that
compare pattern for each of the
possible n-m+1 values of shift.

b
[alclalalblc]
B
[alalb]

Naive algerithm

*NaiveEg.c
long naivesearch (‘unsigned char *P, long M, unsigned char *T,
long N)
{ long ij;
for (11=0/; i<= N-M; i++)
{ for (=0; j<M; j++)
{ if (P[] != T[i+j] break; }
if'(j == my) return (i) ;

returni (-1);
}

For each (n-m+1) possible values of shift s, inner loop runs for M times.
Thus

O ((n-m#1)m) => O(n2

Rabin - Karp...Contd

« Example of removing and shifting/the elements of the
array.
« et T="123456" and m =3
« T(0) =123
« First: remove the first digit: (123 — 100*1) = 23
+ Second: Multiply by 10/to shift it: 23*10 = 230
* Third: Add last digit: 230 + 4 = 234, which:is T(1)
* The algorithm runs by comparing, t (s) with p.
= When t(s) = p, then we have found the substring P in T, starting
from position s.
Problem: t(s) and p may be too large, therefore no built-in data
type can fit them.
Solution: All t(s) and p be performed in modulo g.

KMP:contd

< The difficulty lies in figuring how: far to skip when
a mismatch occurs. The goal'is to skip as far as
possible without' missing any potential matches.

Trick here is to pre-compute a table of skips for
eachiprefix ahead of time, so that at running
time, we immediately knew how many chars to
skip.

Note that this pre-computation is based on
entirely upon Pattern P, so the length of the text
do not have any role to play in cost of pre-
computation.

Rabin — Karp algoernithm

= String matching algorithm that compares string’s
hashivalues, rather than string themselves.
Performs well in practice, and generalized to
other algoerithmifor related problems, such as
two-dimensional pattern matching.

* Worst case running time is O((n-m+1)*m”)
For efficiency, the hash value of the next
position in the text is easily computed from the
hash value of the current position.

Knuth-Merrs-Prait algerithm

« It ensures that a string search will not require more than N character

comparison (once some pre-computation is performed)

+ e.g. pattern “AAAB” is searched in “AAAXAAAAA”.

Naiive algorithm will ok till “B” in the pattern fails to match the 4
char of the text. At this point, it will shift the pattern by one position
and start over.

Looks Inefficient ? Yes

Because during the mismatch above, we learned some key
information about the text- because first three characters match
successfully.

We implicitly know what the first two character are of the next
substring are, so we should not explicitly check them.

« KMP' uses this information to reduce number of times it compares

each character of text with character in pattern.

