
1

Linear Sorting

• Topics Covered:
– Lower Bounds for Sorting
– Counting Sort
– Radix Sort
– Bucket Sort

Lower Bounds for Sorting

• Comparison vs. non-Comparison
sorting

• Decision tree model

• Worst case lower bound

Comparison Sorting

• Relies solely on relative ordering of
elements

• Generalization: only ≤ operation allowed
between any two elements

• Examples of comparison sorts: quicksort,
heapsort, bubblesort, mergesort, selection
sort, etc.

Decision Tree Model p.1

• Internal node = comparison between two
elements

• Leaf node = correct ordering (sort complete)

Decision Tree Model p.2

• Path = comparisons made to arrive at an
ordering

• Every possible ordering must appear as a leaf

Worst Case Lower Bound
• The length of longest path from root to leaf

is number of comparisons in worst case
• Problem reduces to: what is min height of

decision tree in which every possible
permutation is a leaf?

• Let h = height of tree, n = size of set.
Then answer = min{ h: n! ≤ 2h } or
min { h: log(n!) ≤ h }, that is

() ()() () ()nnnnnnh n logloglog!log Ω=Θ=Θ==

2

Proof of Lower Bound

• Stirling’s Approximation for n!
1! 2 1

nnn n O
e n

π ⎛ ⎞⎛ ⎞ ⎛ ⎞= +⎜ ⎟ ⎜ ⎟⎜ ⎟
⎝ ⎠ ⎝ ⎠⎝ ⎠

() () () () ()()1 1log ! log 2 log log log 1
2

nn n n n e O nπ= + − + +

() () ()log lognn O n n n= + = Θ

Counting Sort

• Tallies each number’s occurrence within
the array

• The algorithm assumes each element in
the array is an integer, in the range 0 to k

• Needs a temporary array for working
space with length k

• Also needs another array to hold the
output

Counting Sort Algorithm

orig Original Array
out Output Array
temp Temporary array
for i ← 0 to k

do temp[i] ← 0
for j ← 1 to length[orig]

do temp[orig[j]] ← temp[orig [j]] + 1

Counting Sort

– Made a second array with length equal to the original
array’s length

4 413 2 21455

• Two 1s
• Two 2
• One 3
• Three 4s
• Two 5s

00 0 000

31 2 540

temp

orig

11111 2232 2

Counting Sort
Calculating the number of elements less than

or equal to each slot number (Stable)
for i ← 1 to k

do temp[i] ← temp[i] + temp[i - 1]

31 2 540

temp

12 2 230before 4 5 8 10

for j ← length[orig] - 1 to 0
do

temp[orig[j]] ← temp[orig[j]] - 1
out[temp[orig[j]]] ← orig[j]

52 4 1080
31 2 540

4 413 2 21455
3 761 2 98540

3 761 2 98540

orig

temp

out 1 2

31

4

7

1

0

3

Counting Sort

2 441 2 55431

• Two 1s
• Two 2
• One 3
• Three 4s
• Two 5s

Final Result

Counting Sort

Alternative version:
Going through the temp array, use the

information to fill the original array with
sorted numbers (Unstable):

Advantage: Don’t need output array

4 413 2 21455 12 2 230
31 2 540

temporig

3 761 2 98540
1 1 2 2 3 4 4 4 5 5

Counting Sort

• Advantages
– Fast
– Stable

• Duplicates maintain
order

• Disadvantages
– Requires additional

memory

Radix sort

or
Old School

Definition

• is the algorithm used by the card-sorting
machines

• A multiple pass sort algorithm that distributes
each item to a bucket according to part of the
item's key beginning with the least significant
part of the key. After each pass, items are
collected from the buckets, keeping the items in
order, then redistributed according to the next
most significant part of the key

How it works…

• The cards are organized into 80 columns
• in each column a hole can be punched in

one of 12 places
• The sorter mechanically examines a given

column of each card in a deck and
distributes the card into one of 12 bins
depending on which place has been
punched

4

• An operator gathers the cards bin by bin,
so that cards with the first place punched
are on top of cards with the second place
punched, and so on.

• For decimal digits, only 10 places are used
in each column.

• The other two places are used for
encoding nonnumeric characters

• A d-digit number would then occupy a field
of d columns

• Unfortunately, since the cards in 9 of the
10 bins must be put aside to sort each of
the bins, this procedure generates many
intermediate piles of cards that must be
kept track of.

• It sorts on the least significant digit first.
• http://ciips.ee.uwa.edu.au/~morris/Year2/P

LDS210/radixsort.html

Bucket Sort

• Bucket sort runs in linear time when the
input is drawn from a uniform distribution.

• Like counting sort, bucket sort is fast
because it assumes something about the
input.

• Whereas counting sort assumes that the
input consists of integers in a small range,
bucket sort assumes that the input is
generated by a random process that
distributes elements uniformly over the
interval [0, 1).

Idea

• divide the interval [0, 1) into n equal-sized
subintervals, or buckets

• distribute the n input numbers into the
buckets

• Assumption: Since the inputs are uniformly
distributed over [0, 1), we don't expect
many numbers to fall into each bucket

• sort the numbers in each bucket
• go through the buckets in order, listing the

elements in each.

5

Algorithm
• Let be S be a sequence of n (key, element)

items with keys in the range [0, N - 1]
• Bucket-sort uses the keys as indices into an

auxiliary array B of sequences (buckets)
• Phase 1: Empty sequence S by moving

each item (k, o) into its bucket B[k]
• Phase 2: For i = 0, …, N - 1, move the

items of bucket B[i] to the end of sequence
S

Analysis

• Phase 1 takes O(n) time
• Phase 2 takes O(n + N) time
• Bucket-sort takes O(n + N) time

Example

• http://www.cs.iitm.ernet.in/tell/foc_selfstud
y/code/bucket.html

References

• Thomas H. Cormen et al. Introduction to
Algorithms, 2nd Edition. MIT Press © 2001

• Counting Sort Algorithm. Worcester
Polytechnical Institute
<http://www.cs.wpi.edu/~dobrush/cs504/s02/projects/cou
nting_sort.htm> 3/18/2003

• CS2 Lab 7. Rochester Institute of Technology
<http://www.cs.rit.edu/~cs2/NewLabs/07/act1.html>
3/18/2003

References
part 2

• http://www.nist.gov/dads/HTML/radixsort.ht
ml

• http://ciips.ee.uwa.edu.au/~morris/Year2/PL
DS210/radixsort.html

• http://www.datastructures.net/presentations
• http://www.cs.iitm.ernet.in/tell/foc_selfstudy/

code/bucket.html

