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HOW?

e Place everything in an array based on
search key value

e Run the search key through an address
calculator (the hash function)

e Insert/retrieve from location specified by the
hash function (address calculator)
e This scheme is termed hashing
e The function is the hash function
e The array is called a hash table

Ordered Operations

o We said earlier that hash tables don't work well
for ordered operations

e Now you should know enough to understand
why
e Problems:

e Display the users stored in a hash table alphabetically

e Finding the lowest/highest values in a database
o To do these operations, we need to retrieve all the
data in the hash table, sort or compare as we
retrieve.

Hashing
e Sorting was putting things in nice neat
order
e Hashing is the opposite
e Put things in a “random” order

e Algorithmically determine position of any
given item

e Improve search from O(log,N) to O(1)

Why not discard other data
structures?

The mapping not always one-to-one
e A major drawback

e Results in collisions - two items mapped to
same location
» which adds complexity

e Ordered operations do not work well

e Making array large enough to avoid
collisions seldom practical

Typical Hash Function

e Must
e Be fast and easy to compute
e Place items evenly through the hash table

» More important, because the biggest performance

loss is due to resolving collisions




Different Hash Functions

e Division and Remainder method
hash (key) = key % ARRAY_SIZE

e Can distribute array items evenly by choosing
a prime number for ARRAY_ SIZE

e Folding

Add the digits
e hash(001364825) = 1+3+6+4+8+2+5 = 29
e Produces a normal distribution — too bunched up

Collision Resolving

e Collision

4567 % 101 = 22 = 7597 % 101 : collision
e Two approaches to resolve

o Alter the hash table to allow multiple entries per
location

e Allocate another location within the hash table

Buckets

e Each array location is itself an array called
a bucket
e Problem is choosing size of these arrays
o If too small, will fill up and must probe
o If too large, wasted space

Continued..

e Universal hashing

-select hash function at random from designed class of
functions

- Diff address for the same inputs

e Digit Rearrangement

- taking part of the original value or key , reversing of
order, using that sequence of digits

Restructure Hash Table

e Multiple items stored in a single array
location

e Two schemes to do this
o Buckets
e Separate chaining

Chaining

e Hash table is an array of linked lists

e Each array element is a pointer to a linked list,
the chain

o Insertion: place at beginning of chain

o Deletion/retrieval: search the appropriate
chain




Chaining

e Insertion is O(1)
e Deletion/retrieval depend on chain length

e Searching
e (1 +a) for successful search
e (1+ ) for unsuccessful search
e Best case: O(1), worst case: O(N)

Linear probing

e Probe sequentially until an empty spot is
found
Given key K
First slot probed T[h'(k)], if collision continue
T[h'(K)+1] Up to T[m-1]
- Wrap around if you get to the end
e Additions straightforward
e Deletions pose a problem

Quadratic probing

e Uses a hash function
h(k,i) = (’(k)+C, i + C,i2) mod m
C,C, - auxillary constants

- Positions are offset in a quadratic manner
e Virtually eliminates primary clusters

e Suffers from secondary clustering since same probe
sequence used to resolve collision at original location

Open Addressing

e Open Addressing

Probe for another empty, open location
- Linear Probing
- Quadratic probing
- Double Hashing

Problems of Linear Probing

e Items tend to cluster together in
consecutively occupied locations
e Termed primary clustering
e A cluster tends to increase in size
e Clusters can merge into larger clusters
e Increase the average search time

e Primary clustering makes linear probing
inefficient

Double Hashing

e Best methods of open addressing
e Uses a hash function
h(k,i) = (hy(k) + ih, (k)) mod m
h, h, auxillary hash functions
e Drastically reduces clustering
e Previous methods are key independent

e Double hashing uses key-dependent
probe sequences




Continued

e Choose first function hash() as usual
e Follow these guidelines for hash2()
e hash2(key) =0
e hash2() != hash()

Linear Probing

e As collisions increase

e Probe sequence increases

e Search time increases

e o should not exceed 2/3 for linear probing
e Best case : O(1)

e Worst Case : O(1+ a )

Good Hash Function

e Easy and fast to compute

e Scatter data evenly through table
e Check for various types of data
o Random data
» Nonrandom data
e Two general principles for even distribution
» Use the whole key
o If modulo math, base should be prime

Hashing Efficiency

e Involves the load factor a
e o = average # of elements
e o is a measure of how full the table is
e As the hash table fills
o o increases
» Chance of collision increases
e Search time increases
» Hashing efficiency decreases

Quadratic probing ,Double Hashing

e On average, both require fewer comparisons
than linear probing

e For o = 2/3, avg unsuccessful search might require
at most 3 compares, successful 2

e All three open addressing schemes suffer
when unable to predict number of insertions
and deletions as table may be too small

Questions

I)
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