HASHING

By,
Durgesh B Garikipati
Ishrath Munir

HOW?

e Place everything in an array based on
search key value

e Run the search key through an address
calculator (the hash function)

e Insert/retrieve from location specified by the
hash function (address calculator)
e This scheme is termed hashing
e The function is the hash function
e The array is called a hash table

Ordered Operations

o We said earlier that hash tables don't work well
for ordered operations

e Now you should know enough to understand
why
e Problems:

e Display the users stored in a hash table alphabetically

e Finding the lowest/highest values in a database
o To do these operations, we need to retrieve all the
data in the hash table, sort or compare as we
retrieve.

Hashing
e Sorting was putting things in nice neat
order
e Hashing is the opposite
e Put things in a “random” order

e Algorithmically determine position of any
given item

e Improve search from O(log,N) to O(1)

Why not discard other data
structures?

The mapping not always one-to-one
e A major drawback

e Results in collisions - two items mapped to
same location
» which adds complexity

e Ordered operations do not work well

e Making array large enough to avoid
collisions seldom practical

Typical Hash Function

e Must
e Be fast and easy to compute
e Place items evenly through the hash table

» More important, because the biggest performance

loss is due to resolving collisions




Different Hash Functions

e Division and Remainder method
hash (key) = key % ARRAY_SIZE

e Can distribute array items evenly by choosing
a prime number for ARRAY_ SIZE

e Folding

Add the digits
e hash(001364825) = 1+3+6+4+8+2+5 = 29
e Produces a normal distribution — too bunched up

Collision Resolving

e Collision

4567 % 101 = 22 = 7597 % 101 : collision
e Two approaches to resolve

o Alter the hash table to allow multiple entries per
location

e Allocate another location within the hash table

Buckets

e Each array location is itself an array called
a bucket
e Problem is choosing size of these arrays
o If too small, will fill up and must probe
o If too large, wasted space

Continued..

e Universal hashing

-select hash function at random from designed class of
functions

- Diff address for the same inputs

e Digit Rearrangement

- taking part of the original value or key , reversing of
order, using that sequence of digits

Restructure Hash Table

e Multiple items stored in a single array
location

e Two schemes to do this
o Buckets
e Separate chaining

Chaining

e Hash table is an array of linked lists

e Each array element is a pointer to a linked list,
the chain

o Insertion: place at beginning of chain

o Deletion/retrieval: search the appropriate
chain




Chaining

e Insertion is O(1)
e Deletion/retrieval depend on chain length

e Searching
e (1 +a) for successful search
e (1+ ) for unsuccessful search
e Best case: O(1), worst case: O(N)

Linear probing

e Probe sequentially until an empty spot is
found
Given key K
First slot probed T[h'(k)], if collision continue
T[h'(K)+1] Up to T[m-1]
- Wrap around if you get to the end
e Additions straightforward
e Deletions pose a problem

Quadratic probing

e Uses a hash function
h(k,i) = (’(k)+C, i + C,i2) mod m
C,C, - auxillary constants

- Positions are offset in a quadratic manner
e Virtually eliminates primary clusters

e Suffers from secondary clustering since same probe
sequence used to resolve collision at original location

Open Addressing

e Open Addressing

Probe for another empty, open location
- Linear Probing
- Quadratic probing
- Double Hashing

Problems of Linear Probing

e Items tend to cluster together in
consecutively occupied locations
e Termed primary clustering
e A cluster tends to increase in size
e Clusters can merge into larger clusters
e Increase the average search time

e Primary clustering makes linear probing
inefficient

Double Hashing

e Best methods of open addressing
e Uses a hash function
h(k,i) = (hy(k) + ih, (k)) mod m
h, h, auxillary hash functions
e Drastically reduces clustering
e Previous methods are key independent

e Double hashing uses key-dependent
probe sequences




Continued

e Choose first function hash() as usual
e Follow these guidelines for hash2()
e hash2(key) =0
e hash2() != hash()

Linear Probing

e As collisions increase

e Probe sequence increases

e Search time increases

e o should not exceed 2/3 for linear probing
e Best case : O(1)

e Worst Case : O(1+ a )

Good Hash Function

e Easy and fast to compute

e Scatter data evenly through table
e Check for various types of data
o Random data
» Nonrandom data
e Two general principles for even distribution
» Use the whole key
o If modulo math, base should be prime

Hashing Efficiency

e Involves the load factor a
e o = average # of elements
e o is a measure of how full the table is
e As the hash table fills
o o increases
» Chance of collision increases
e Search time increases
» Hashing efficiency decreases

Quadratic probing ,Double Hashing

e On average, both require fewer comparisons
than linear probing

e For o = 2/3, avg unsuccessful search might require
at most 3 compares, successful 2

e All three open addressing schemes suffer
when unable to predict number of insertions
and deletions as table may be too small

Questions

I)




References

1) Introduction to Algorithms
Thomas H. Cormen, Charles E.Leiserson,
Ronald L. Rivest

2) http://www.palfrader.org/hashing/

3)http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS2
10/hash_tables.html

A)http://64.233.179.104/search?g=cache:9dqRIPQ
hL5gJ:www.npsnhet.org/~mcdowell/CS3971/ha
shing+hashing%2Befficiency&hl=en




