
1

HASHINGHASHING

By,By,
Durgesh B GarikipatiDurgesh B Garikipati

Ishrath MunirIshrath Munir

HashingHashing
Sorting was putting things in nice neat Sorting was putting things in nice neat
orderorder
Hashing is the oppositeHashing is the opposite

Put things in a “random” orderPut things in a “random” order
Algorithmically determine position of any Algorithmically determine position of any
given itemgiven item
Improve search from O(logImprove search from O(log22N) to O(1)N) to O(1)

HOW?HOW?

Place everything in an array based on Place everything in an array based on
search key valuesearch key value

Run the search key through an address Run the search key through an address
calculator (the hash function)calculator (the hash function)
Insert/retrieve from location specified by the Insert/retrieve from location specified by the
hash function (address calculator)hash function (address calculator)

This scheme is termed hashingThis scheme is termed hashing
The function is the hash functionThe function is the hash function
The array is called a hash tableThe array is called a hash table

Why not discard other data Why not discard other data
structures? structures?

The mapping not always oneThe mapping not always one--toto--oneone
A major drawbackA major drawback
Results in collisions Results in collisions -- two items mapped to two items mapped to
same locationsame location

which adds complexitywhich adds complexity

Ordered operations do not work wellOrdered operations do not work well
Making array large enough to avoid Making array large enough to avoid
collisions seldom practicalcollisions seldom practical

Ordered OperationsOrdered Operations

We said earlier that hash tables don’t work well We said earlier that hash tables don’t work well
for ordered operationsfor ordered operations

Now you should know enough to understand Now you should know enough to understand
whywhy

Problems:Problems:
Display the users stored in a hash table alphabeticallyDisplay the users stored in a hash table alphabetically
Finding the lowest/highest values in a databaseFinding the lowest/highest values in a database

To do these operations, we need to retrieve all the To do these operations, we need to retrieve all the
data in the hash table, sort or compare as we data in the hash table, sort or compare as we
retrieve.retrieve.

Typical Hash Function Typical Hash Function

Must Must
Be fast and easy to computeBe fast and easy to compute
Place items evenly through the hash tablePlace items evenly through the hash table

More important, because the biggest performance More important, because the biggest performance
loss is due to resolving collisionsloss is due to resolving collisions

2

Different Hash FunctionsDifferent Hash Functions

Division and Remainder methodDivision and Remainder method
hash (key) = key % ARRAY_SIZEhash (key) = key % ARRAY_SIZE

Can distribute array items evenly by choosing Can distribute array items evenly by choosing
a prime number for ARRAY_ SIZEa prime number for ARRAY_ SIZE

FoldingFolding
Add the digitsAdd the digits

hash(001364825) = 1+3+6+4+8+2+5 = 29hash(001364825) = 1+3+6+4+8+2+5 = 29
Produces a normal distribution Produces a normal distribution –– too bunched uptoo bunched up

Continued..Continued..
Universal hashingUniversal hashing

--select hash function at random from designed class of select hash function at random from designed class of
functionsfunctions

-- Diff address for the same inputsDiff address for the same inputs

Digit RearrangementDigit Rearrangement
-- taking part of the original value or key , reversing of taking part of the original value or key , reversing of
order, using that sequence of digits order, using that sequence of digits

Collision ResolvingCollision Resolving

CollisionCollision
4567 % 101 = 22 = 7597 % 101 : collision4567 % 101 = 22 = 7597 % 101 : collision

Two approaches to resolveTwo approaches to resolve

Alter the hash table to allow multiple entries per Alter the hash table to allow multiple entries per
locationlocation
Allocate another location within the hash tableAllocate another location within the hash table

Restructure Hash TableRestructure Hash Table

Multiple items stored in a single array Multiple items stored in a single array
locationlocation

Two schemes to do thisTwo schemes to do this
BucketsBuckets
Separate chainingSeparate chaining

BucketsBuckets

Each array location is itself an array called Each array location is itself an array called
a bucketa bucket

Problem is choosing size of these arraysProblem is choosing size of these arrays
If too small, will fill up and must probeIf too small, will fill up and must probe
If too large, wasted spaceIf too large, wasted space

ChainingChaining

Hash table is an array of linked listsHash table is an array of linked lists
Each array element is a pointer to a linked list, Each array element is a pointer to a linked list,
the chainthe chain

Insertion: place at beginning of chainInsertion: place at beginning of chain
Deletion/retrieval: search the appropriate Deletion/retrieval: search the appropriate
chainchain

3

ChainingChaining

Insertion is O(1)Insertion is O(1)
Deletion/retrieval depend on chain lengthDeletion/retrieval depend on chain length

SearchingSearching
(1 + (1 + αα) for successful search) for successful search
(1+ (1+ αα) for unsuccessful search) for unsuccessful search
Best case: O(1), worst case: O(N)Best case: O(1), worst case: O(N)

Open AddressingOpen Addressing

Open AddressingOpen Addressing
Probe for another empty, open locationProbe for another empty, open location
-- Linear ProbingLinear Probing
-- Quadratic probingQuadratic probing
-- Double HashingDouble Hashing

Linear probingLinear probing

Probe sequentially until an empty spot is Probe sequentially until an empty spot is
foundfound

Given key KGiven key K
First slot probed T[h’(k)], if collision continueFirst slot probed T[h’(k)], if collision continue
T[h’(k)+1]….. Up to T[mT[h’(k)+1]….. Up to T[m--1] 1]
-- Wrap around if you get to the endWrap around if you get to the end

Additions straightforwardAdditions straightforward
Deletions pose a problemDeletions pose a problem

Problems of Linear ProbingProblems of Linear Probing

Items tend to cluster together in Items tend to cluster together in
consecutively occupied locationsconsecutively occupied locations

Termed primary clusteringTermed primary clustering
A cluster tends to increase in sizeA cluster tends to increase in size
Clusters can merge into larger clustersClusters can merge into larger clusters
Increase the average search timeIncrease the average search time
Primary clustering makes linear probing Primary clustering makes linear probing
inefficientinefficient

Quadratic probingQuadratic probing

Uses a hash function Uses a hash function
h(k,i) = (h’(k)+Ch(k,i) = (h’(k)+C11 i + Ci + C22 ii22) mod m) mod m

CC11 CC22 -- auxillary constantsauxillary constants
i = 0 ,……,mi = 0 ,……,m--11
-- Positions are offset in a quadratic mannerPositions are offset in a quadratic manner

Virtually eliminates primary clustersVirtually eliminates primary clusters
Suffers from secondary clustering since same probe Suffers from secondary clustering since same probe
sequence used to resolve collision at original locationsequence used to resolve collision at original location

Double HashingDouble Hashing

Best methods of open addressingBest methods of open addressing
Uses a hash function Uses a hash function

h(k,i) = (hh(k,i) = (h11(k) + (k) + iihh22 (k)) mod m(k)) mod m
hh1, 1, hh2 2 auxillary hash functionsauxillary hash functions
Drastically reduces clusteringDrastically reduces clustering
Previous methods are key independentPrevious methods are key independent
Double hashing uses keyDouble hashing uses key--dependent dependent
probe sequencesprobe sequences

4

ContinuedContinued

Choose first function hash() as usualChoose first function hash() as usual
Follow these guidelines for hash2()Follow these guidelines for hash2()

hash2(key) != 0hash2(key) != 0
hash2() != hash()hash2() != hash()

Hashing EfficiencyHashing Efficiency

Involves the load factor Involves the load factor αα
αα = average # of elements = average # of elements
αα is a measure of how full the table isis a measure of how full the table is
As the hash table fillsAs the hash table fills

αα increasesincreases
Chance of collision increasesChance of collision increases
Search time increasesSearch time increases
Hashing efficiency decreasesHashing efficiency decreases

Linear ProbingLinear Probing

As collisions increaseAs collisions increase
Probe sequence increasesProbe sequence increases
Search time increasesSearch time increases
αα should not exceed 2/3 for linear probingshould not exceed 2/3 for linear probing

Best case : O(1)Best case : O(1)
Worst Case : O(1+ Worst Case : O(1+ αα))

Quadratic probing ,Double HashingQuadratic probing ,Double Hashing

On average, both require fewer comparisons On average, both require fewer comparisons
than linear probingthan linear probing

For For αα = 2/3, avg unsuccessful search might require = 2/3, avg unsuccessful search might require
at most 3 compares, successful 2at most 3 compares, successful 2

All three open addressing schemes suffer All three open addressing schemes suffer
when unable to predict number of insertions when unable to predict number of insertions
and deletions as table may be too smalland deletions as table may be too small

Good Hash FunctionGood Hash Function

Easy and fast to computeEasy and fast to compute
Scatter data evenly through tableScatter data evenly through table

Check for various types of dataCheck for various types of data
Random dataRandom data
Nonrandom dataNonrandom data

Two general principles for even distributionTwo general principles for even distribution
Use the whole keyUse the whole key
If modulo math, base should be primeIf modulo math, base should be prime

QuestionsQuestions

??

5

ReferencesReferences

1)1) Introduction to AlgorithmsIntroduction to Algorithms
Thomas H. Thomas H. CormenCormen, Charles , Charles E.LeisersonE.Leiserson, ,
Ronald L. Ronald L. RivestRivest

2) 2) http://www.palfrader.org/hashing/http://www.palfrader.org/hashing/
3)http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS23)http://ciips.ee.uwa.edu.au/~morris/Year2/PLDS2

10/hash_tables.html10/hash_tables.html
4)http://64.233.179.104/search?q=cache:9dqRIPQ4)http://64.233.179.104/search?q=cache:9dqRIPQ

hL5gJ:www.npsnet.org/~mcdowell/CS3971/hahL5gJ:www.npsnet.org/~mcdowell/CS3971/ha
shing+hashing%2Befficiency&hl=enshing+hashing%2Befficiency&hl=en

