

Presentation Overview

- Introduction
- Basic Method
- Things To Remember
- Key Concepts
- Basic Algorithm
- Example
- Analysis
- References

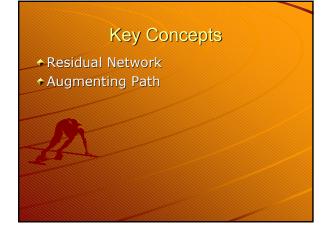
Introduction – Cont.

Tidbits

- Co-developed in 1956 by Mathematicians Lester Randolph Ford Sr. and Delbert Ray Fulkerson
- Referred to as a method because there are several algorithm implementations with differing running times

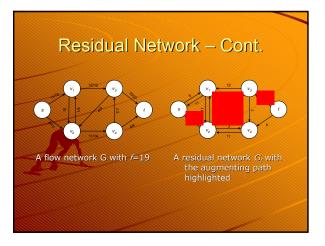
Basic Method

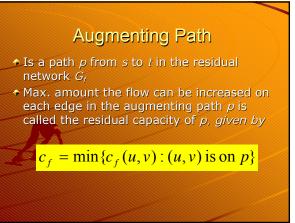
- Iterative process with the flow f initial value set to 0
- On each iteration, increase flow f by
- finding an "augmenting path" and augmenting the flow along this path
- Repeat process until no augmenting path can be found, process
- terminates yielding maximum flow

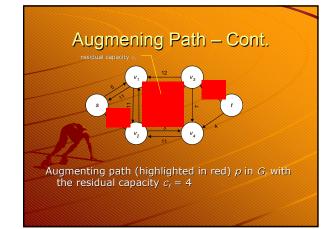

1

Things To Remember

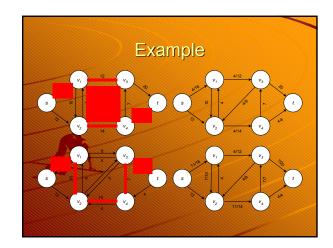
Properties of flows

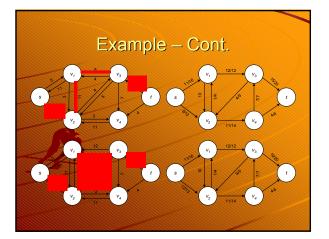

- A flow cannot be greater than the capacity of the edge that is f(u,v) ≤ c(u,v)
- Skew symmetry
 - The flow from vertex u to vertex v is the negative of the flow in the reverse direction that is f(u,v)=-f(v,u)

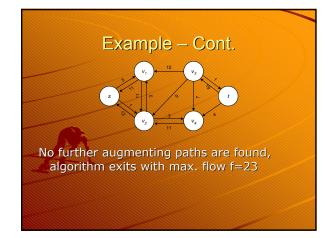

 - Notional convenience
- Flow conservation
 - $\mbox{\sc The}$ total flow entering a vertex must equal the total flow leaving the vertex



Residual Network


- Consists of edges that can admit more flow
- * Def. *residual capacity* $c_t(u, v)$ is the additional flow that can be pushed on to an edge without exceeding the capacity, residual capacity is given $by c_f(u, v) = c(u, v) - f(u, v)$
- Residual network G_r is a flow network with capacities c_f





	Basic Algorithm
	eudo code
Fo	rd-Fulkerson(G,s,t)
	or each edge (u,v) E E[G]
2	do f[u,v] $\leftarrow 0$
3	f[v,u] ← 0
4 v	while there exists a path p from s to t in the residual network C
5	do $c_{f}(p) \leftarrow \min\{c_{f}(u,v) : (u,v) \text{ is in } p\}$
6	for each edge (u,v) in p
	do f[u,v] \leftarrow f[u,v] + c _r (p)
	$f[v,u] \leftarrow -f[u,v]$

Analysis

- Running time depends on how the augmenting path is chosen
- If capacities are integral values and using a breadth-first or depth-first search O(E) to find the augmenting path, the algorithm runs in O(E |f*|)
- where f* is the maximum flow

References

- Thomas H. Cornmen, Charles E. Leiserson, and Clifford Stein. *Introduction to Algorithms*. MIT Press, 2001
- Ravindra K. Ahuja, Thomas L. Magnanti, and James B. Orlin. *Network Flows: Theory, Algorithms, and Applications.* Prentice Hall, 1993
- <u>http://en.wikipedia.org/wiki/Ford-</u>
 <u>Fulkerson_algorithm</u>, 10 April, 2005

3