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Introduction to Dynamic Programming
When is it used?
Bioinformatics
Examples in Bioinformatics
Longest Common Subsequence
Analysis of LCS

Compared WithCompared With
DivideDivide--andand--conquerconquer

Dynamic Programming solves every 
subproblem just once and then saves its 
answer in a table.
More efficient than Divide-and-conquer. 
Requires more memory for the table though. 

Typical UseTypical Use

Optimization Problems

– Each solution has a value, we wish to find a 
solution with the optimal (max or min) value.

StepsSteps

1. Characterize the structure of an optimal solution.
2. Recursively define the value of an optimal 

solution in terms of the optimal solutions to 
subproblems.

3. Compute the value of an optimal solution in a 
bottom-up fashion.

4. Construct an optimal solution from the 
computed information.

When it is used?When it is used?

When your problem exhibits:

1. Optimal Substructure

2. Overlapping Subproblems
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Optimal Substructure (1)Optimal Substructure (1)

Optimal substructure is the property 
stating that an optimal solution to a 
problem contains within it an optimal 
solution to subproblems.
The solution to the problem consists of 
making a choice.
Suppose you are given the choice that 
leads to an optimal solution.

Optimal Substructure (2)Optimal Substructure (2)

You determine which subproblems to 
ensue.
Show that the solutions to the subproblems
used within the optimal solutions to the 
problem must themselves be optimal.

Overlapping Overlapping SubproblemsSubproblems

A potential recursive algorithm will visit 
the same problem multiple times.
Solutions to subproblems stored in a table 
with constant time lookup.
Choices made are also stored in a table

BioinformaticsBioinformatics

The science of managing and analyzing 
biological data using advanced computing 
techniques. 

Rapidly growing field.

ExamplesExamples

Analysis of Protein structures

Determining Molecular structure

Analyzing DNA sequences
(Human Genome Project)

Longest Common Longest Common 
SubsequenceSubsequence
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SubsequenceSubsequence

Subsequence - a substring of the sequence that 
maintains order but not necessarily consecutively
Formally:
Z=<z1,z2,…,zk> is a subsequence of 
X=<x1,x2,…,xm> if there exists a strictly 
increasing sequence <i1,i2,…ik> of indices of X 
such that for all j=1,2,…k  we have xij=zj

Common SubsequenceCommon Subsequence

Common Subsequence – a subsequence Z 
such that Z is a subsequence of X and Y
Example: In X=<A,B,C,B,D,A,B> and 
Y=<B,D,C,A,B,A>, <B,C,A> is a common 
subsequence.
For X, a sequence is <i1,i2,i3> = <2,3,6>
For Y, a sequence is <i1,i2,i3> = <1,3,4>

Longest Common Longest Common 
SubsequenceSubsequence

Since there is a longer subsequence in 
X=<A,B,C,B,D,A,B> and 
Y=<B,D,C,A,B,A>, <B,C,A> is not the 
longest common subsequence.
<B,C,B,A> is the longest subsequence of 
both X and Y and is of length 4
Dynamic programming is used here since 
we need to find the optimal solution

Characterizing an LCSCharacterizing an LCS

Theorem – Optimal Structure of an LCS
Let X=<x1,x2,…,xm> and Y=<y1,y2,…,yn> 
Let Z=<z1,z2,…,zk> be an LCS of X and Y
1. If xm=yn then zk=xm=yn and zk-1 is an LCS of xm-1,

yn-1
2. If xm≠yn then if zk ≠ xm implies that z is an LCS 

of xm-1,yn
3. If xm ≠ yn then if zk ≠ yn implies that z is an LCS 

of xm, yn-1

Characterizing an LCSCharacterizing an LCS

In plain English, if the last elements of the 
sequence match, that value is the last 
element of LCS.
If the last elements of the sequence do not 
match, then each sequence must be 
compared to the other sequence 
disregarding that other sequences last 
element.

Recursive SolutionRecursive Solution

The problem lends itself to a recursive 
solution.
c[i,j]=the length of the LCS of xi and yj
– c[i,j]=0 if i=0 or j=0
– c[i,j]=c[i-1,j-1] + 1 if i,j > 0 and xi=yj
– c[i,j]=max(c[i,j-1],c[i-1,j] if i,j > 0 and xi≠yj

The values stored in c are the results of the 
subproblems.
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Compute the Length of an Compute the Length of an 
LCSLCS

LCS-LENGTH(X, Y)
m=length(X)
n=length(Y)
for i←0 to m

c[i,0]←0
for j←0 to n

c[0,j]←0
for i←1 to m

for j←1 to n
if (xi=yj) then

c[i,j]←c[i-1,j-1]+1
b[i,j]←“ ”

else if c[i-1,j]≥c[i,j -1] then
c[i,j]←c[i-1,j]
b[i,j]←“ ”

else
c[i,j]←c[i,j-1]
b[i,j]←“ ”

return c and b

Compute the Length of an Compute the Length of an 
LCSLCS

The resulting two tables contain all the 
information about the LCS of X and Y
The table b is used to construct the value of 
the LCS of X and Y
Table c is used to find the length of the LCS 
of X and Y

Constructing the LCSConstructing the LCS

To find the LCS, you start at b[m,n] and 
trace back through the arrows.
When you encounter a “ ” at some b[i,j], it 
means that xi = yj and is an element of the 
LCS
Of course, this algorithm finds the LCS 
starting at the end

Constructing the LCSConstructing the LCS
PRINT-LCS(b,X,i,j)
if i=0 or j=0 then

return
if b[i,j]= “ ” then

PRINT-LCS(b,X,i-1,j-1)
print xi

else if b[i,j] = “ ” then
PRINT-LCS(b,X,i-1,j)

else // b[i,j] = “ ”
PRINT-LCS(b,X,i,j-1)

LCS ExampleLCS Example

X=<A,B,C,B,D,A,B> and 
Y=<B,D,C,A,B,A>
Find the length of the LCS and the LCS 
itself

xi

A
B
C
B
D
A
B 0

0
0
0
0
0
0

0000000

0        1        2        3        4       5        6 

i

j

yj B       D       C       A      B        A 
0
1
2
3
4
5
6
7



5

xi

A
B
C
B
D
A
B 0

0
0
0
0
0

1110000
0000000

0        1        2        3        4       5        6 

i

j

yj B       D       C       A      B        A 
0
1
2
3
4
5
6
7

xi

A
B
C
B
D
A
B 4432210

4332210
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2211110
1110000

0000000

0        1        2        3        4       5        6 

i

j

yj B       D       C       A      B        A 
0
1
2
3
4
5
6
7

LCS ExampleLCS Example

Resulting answer is an LCS of length 4 
because c[m,n] = 4
LCS of <B,D,C,A,B,A> and 
<A,B,C,B,D,A,B> is <B,C,B,A>

Analysis of LCSAnalysis of LCS

Without using Dynamic Programming it 
was O(2n), where n is the length of one of 
the sequences.
Time of 2n is needed to construct every 
subsequence of the sequence.

Analysis of LCSAnalysis of LCS

Building the table c and b both requires 
O(mn), where m and n are the lengths of the 
two sequences and the time to compute each 
table entry is O(1)
Retrieving the sequence from table b only 
requires O(n+m) since at each stage either i, 
j, or both are decremented. 

Improvements to LCSImprovements to LCS

To save space, table b does not have to be 
constructed.  Instead comparisons with 
elements in table c can allow the LCS to be 
constructed.
The space saved is only Θ(mn), which is not 
an asymptotical decrease.
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Improvements to LCSImprovements to LCS

Space can be reduced asymptotically by 
optimizations to table c.
Since only two rows are being compared at 
a time, table c only has to consist of two 
rows.
Disadvantage of this is that the LCS cannot 
be reconstructed from this information.

ReferencesReferences
Our textbook,
Introduction to Algorithms, 2nd Edition.
http://amber.cs.umd.edu/class/838-s04/articles.html
http://www.scs.carleton.ca/~nussbaum
http://ranger.uta.edu/~cook/aa/lectures/applets/lcs/lcs.html

Questions?Questions?


