
1

Tuesday, December 2, 2:20:08 PM

1

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Dijkstra’s Algorithm
(single-source shortest-path)

Salvatore Castro
Jason Roberts

Tuesday, December 2, 2:20:08 PM

2

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Overview

Introduction
History
Applications
Theoretical Basis
Pseudocode
Example
Complexity
Conclusion
References

Tuesday, December 2, 2:20:08 PM

3

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Introduction

Single-source shortest-path
Applies to weighted-directed graph
G = (V, E)
Running time lower than Bellman-Ford
Does not run on negative weights

Tuesday, December 2, 2:20:08 PM

4

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

History

Edsger Wybe Dijkstra
May 11, 1930 – August 6,
2002
Go To Statement Considered
Harmful (1968)

"Computer science is no
more about computers than
astronomy is about
telescopes." -E. Dijkstra

Tuesday, December 2, 2:20:08 PM

5

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Shortest Path

Dijkstra’s Algorithm
single source problem if all edge weights are greater than or equal to
zero. Without worsening the run time, this algorithm can in fact
compute the shortest paths from a given start point s to all other
nodes.

Bellman-Ford
single source problem if edge weights may be negative.

A* Shortest Paths
a heuristic for single source shortest paths.

Floyd-Warshall
solves all pairs shortest paths

Johnson’s Algorithm
solves all pairs shortest paths, may be faster than Floyd-Warshall on
sparse graphs.

Tuesday, December 2, 2:20:08 PM

6

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Bellman-Ford

Quick Overview
BF(G,w,s) // G = Graph, w = weight, s=source
Determine Single Source(G,s);
set Distance(s) = 0;
Predecessor(s) = nil;
for each vertex v in G other than s,

set Distance(v) = infinity, Predecessor(v) = nil;
for i <- 1 to |V(G)| - 1 do //|V(G)| Number of vertices in the graph

for each edge (u,v) in G do
if Distance(v) > Distance(u) + w(u,v) then

set Distance(v) = Distance(u) + w(u,v), Predecessor(v) = u;
for each edge (u,r) in G do

if Distance(r) > Distance(u) + w(u,r);
return false; //This means that the graph contains a cycle of negative

//weight and the shortest paths are not well defined
return true; //Lengths of shortest paths are in Distance array

2

Tuesday, December 2, 2:20:08 PM

7

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Applications

Routing, Routing, and Routing
OSPF (Open shortest path first) is a well known real
world implementation used in internet routing.

Tuesday, December 2, 2:20:08 PM

8

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Theoretical Basis

Assume that the function w: V x V -> [0, ∞] describes
the cost w(x,y) of moving from vertex x to vertex y
(non-negative cost).
We can define the cost to be infinite for pairs of
vertices that are not connected by an edge.
The cost of a path between two vertices is the sum of
costs of the edges in that path. The cost of an edge
can be thought of as (a generalisation of) the distance
between those two vertices.
For a given pair of vertices s,t in V, the algorithm finds
the path from s to t with lowest cost (i.e. the shortest
path).

Tuesday, December 2, 2:20:08 PM

9

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Theoretical Basis (cont’d)

The algorithm works by constructing a subgraph S of
such that the distance of any vertex v' (in S) from s is
known to be a minimum within G.
Initially S is simply the single vertex s, and the
distance of s from itself is known to be zero.
Edges are added to S at each stage by (a) identifying
all the edges ei = (vi1,vi2) in G-S such that vi1 is in S
and vi2 is in G, and then (b) choosing the edge ej =
(vj1,vj2) in G-S which gives the minimum distance of
its vertex vj2 (in G) from s from all edges ei.
The algorithm terminates either when S becomes a
spanning tree of G, or when all the vertices of interest
are within S.

Tuesday, December 2, 2:20:08 PM

10

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Pseudocode (auxilliary functions)

Initialize-Single-Source(G,s)
1 for each vertex v in V[G]
2 do d[v] := infinite
3 previous[v] := 0
4 d[s] := 0
Relax(u,v,w)
1 if d[v] > d[u] + w(u,v)
2 then d[v] := d[u] + w(u,v)
3 previous[v] := u

Tuesday, December 2, 2:20:08 PM

11

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Pseudocode

Dijkstra(G,w,s)
1 Initialize-Single-Source(G,s)
2 S := empty set
3 Q := set of all vertices
4 while Q is not an empty set
5 do u := Extract-Min(Q)
6 S := S union {u}
7 for each vertex v which is a neighbor of u
8 do Relax(u,v,w)

Tuesday, December 2, 2:20:08 PM

12

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Algorithm Steps

1. Make the source node a “Permanent” Node. The
source node is the first working node.

2. Examine each non-permanent node adjacent to the
working node. If it is not labeled, label it with the
distance from the source and the name of the working
node. If it is labeled, see if the cost computed using
the working node is cheaper than the cost in the
label; if so re-label the node as above.

3. Find the non-permanent node with the smallest label,
and make it permanent. If this is the destination, then
finished. Otherwise, this node is the next working
node, continue from step 2.

3

Tuesday, December 2, 2:20:08 PM

13

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Example

t x

10

5

64

1

2 3

7

2

9
0

∞ ∞

∞ ∞

s

y z

For this example we will use ‘S’ as the start node.

Tuesday, December 2, 2:20:08 PM

14

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Example Continued

t x

10

5
64

1

2 3
7

2

9
0

10 ∞

5 ∞

s

y z

t x

10

5
64

1

2 3
7

2

90

8 14

5 7

s

y z

10

5
64

1

2 3
7

2

90

8 13

5 7

s

y z y z

xt

10

5
64

1

2 3
7

2

90

8 9

5 7

s

xt

Tuesday, December 2, 2:20:08 PM

15

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Final Result

10

5

64

1

2 3

7

2

9
0

8 9

5 7

s

xt

This directed graph illustrates the shortest path from the
source node to each node.

Here is a Java Applet Example

Tuesday, December 2, 2:20:08 PM

16

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Complexity Analysis

First Case: Min-Priority Queue has ordered number of
vertices numbered 1 to |V|. Each INSERT and
DECREASE-KEY operation is O(1). EXTRACT-Min
takes O(V) time. Total: O(V2+E) -> O(V2).
Second Case: Min-Priority Queue is implemented as a
Fibonacci Heap. The total running time for this will be
O(V lgV + E). EXTRACT-Min will take O(lgV) and
DECREASE-Key will take O(1).

Tuesday, December 2, 2:20:08 PM

17

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Conclusion

Dijksta’s algorithm has some similarity to both breadth-
first search (BFS) and Prim’s Algorithm for computing
minimum spanning trees.
BFS: Similar in that the set S corresponds to the set of
black vertices in the BFS just as the vertices in S
have their final shortest-path weights, so do black
vertices in a BFS for their correct vertices.
Prim’s: Similar in that both algorithms use a min-
priority queue to find the “lightest” vertex outside a
given set, add this vertex into the set, and adjust the
weights of the remaining vertices outside the set
accordingly.

Tuesday, December 2, 2:20:08 PM

18

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

Questions?

?’s

4

Tuesday, December 2, 2:20:08 PM

19

sa
c8

37
1@

rit
.ed

u,
jk

r4
08

0@
rit

.ed
u

References

Introduction to Algorithms 2nd Edition T. H. Cormen,
C.E. Leiserson, R.L. Rivest, and C. Stein MIT,
Copyright 2001 by McGraw-Hill pg. 385-393
ISBN 0-07-013151-1
Computer Networking James F. Kurose & Keith W.
Ross, Copyright 2003 by Addison-Wesley pg. 350-353

ISBN 0-07-013151-1
http://carbon.cudenver.edu/~hgreenbe/sessions/dijkstr
a/DijkstraApplet.html

