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Dijkstra’s Algorithm
(single-source shortest-path)

Salvatore Castro
Jason Roberts
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Introduction

Single-source shortest-path
Applies to weighted-directed graph
G = (V, E)
Running time lower than Bellman-Ford
Does not run on negative weights
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History

Edsger Wybe Dijkstra
May 11, 1930 – August 6, 
2002 
Go To Statement Considered 
Harmful (1968)

"Computer science is no 
more about computers than 
astronomy is about 
telescopes."  -E. Dijkstra
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Shortest Path

Dijkstra’s Algorithm
single source problem if all edge weights are greater than or equal to 
zero. Without worsening the run time, this algorithm can in fact
compute the shortest paths from a given start point s to all other
nodes. 

Bellman-Ford
single source problem if edge weights may be negative.

A* Shortest Paths
a heuristic for single source shortest paths.

Floyd-Warshall
solves all pairs shortest paths 

Johnson’s Algorithm
solves all pairs shortest paths, may be faster than Floyd-Warshall on 
sparse graphs. 
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Bellman-Ford

Quick Overview
BF(G,w,s) // G = Graph, w = weight, s=source
Determine Single Source(G,s); 
set Distance(s) = 0; 
Predecessor(s) = nil; 
for each vertex v in G other than s, 

set Distance(v) = infinity, Predecessor(v) = nil; 
for i <- 1 to |V(G)| - 1 do //|V(G)| Number of vertices in the graph 

for each edge (u,v) in G do
if Distance(v) > Distance(u) + w(u,v) then 

set Distance(v) = Distance(u) + w(u,v), Predecessor(v) = u; 
for each edge (u,r) in G do

if Distance(r) > Distance(u) + w(u,r);
return false; //This means that the graph contains a cycle of negative                   

//weight and the shortest paths are not well defined 
return true; //Lengths of shortest paths are in Distance array 
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Applications

Routing, Routing, and Routing
OSPF (Open shortest path first) is a well known real 
world implementation used in internet routing. 
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Theoretical Basis

Assume that the function w: V x V -> [0, ∞] describes 
the cost w(x,y) of moving from vertex x to vertex y 
(non-negative cost). 
We can define the cost to be infinite for pairs of 
vertices that are not connected by an edge.
The cost of a path between two vertices is the sum of 
costs of the edges in that path. The cost of an edge 
can be thought of as (a generalisation of) the distance 
between those two vertices.
For a given pair of vertices s,t in V, the algorithm finds 
the path from s to t with lowest cost (i.e. the shortest 
path). 
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Theoretical Basis (cont’d)

The algorithm works by constructing a subgraph S of 
such that the distance of any vertex v' (in S) from s is 
known to be a minimum within G. 
Initially S is simply the single vertex s, and the 
distance of s from itself is known to be zero.
Edges are added to S at each stage by (a) identifying 
all the edges ei = (vi1,vi2) in G-S such that vi1 is in S 
and vi2 is in G, and then (b) choosing the edge ej = 
(vj1,vj2) in G-S which gives the minimum distance of 
its vertex vj2 (in G) from s from all edges ei. 
The algorithm terminates either when S becomes a 
spanning tree of G, or when all the vertices of interest 
are within S. 
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Pseudocode (auxilliary functions)

Initialize-Single-Source(G,s) 
1 for each vertex v in V[G] 
2 do d[v] := infinite 
3 previous[v] := 0 
4 d[s] := 0 
Relax(u,v,w) 
1 if d[v] > d[u] + w(u,v) 
2 then d[v] := d[u] + w(u,v)
3 previous[v] := u 
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Pseudocode

Dijkstra(G,w,s) 
1 Initialize-Single-Source(G,s) 
2 S := empty set
3 Q := set of all vertices 
4 while Q is not an empty set 
5 do u := Extract-Min(Q) 
6 S := S union {u} 
7 for each vertex v which is a neighbor of u 
8 do Relax(u,v,w) 
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Algorithm Steps

1. Make the source node a “Permanent” Node.  The 
source node is the first working node.

2. Examine each non-permanent node adjacent to the 
working node.  If it is not labeled, label it with the 
distance from the source and the name of the working 
node.  If it is labeled, see if the cost computed using 
the working node is cheaper than the cost in the 
label; if so re-label the node as above.

3. Find the non-permanent node with the smallest label, 
and make it permanent.  If this is the destination, then 
finished.  Otherwise, this node is the next working 
node, continue from step 2.
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Example
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For this example we will use ‘S’ as the start node.
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Example Continued
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Final Result
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This directed graph illustrates the shortest path from the 
source node to each node.

Here is a Java Applet Example
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Complexity Analysis

First Case:  Min-Priority Queue has ordered number of 
vertices numbered 1 to |V|.  Each INSERT and 
DECREASE-KEY operation is O(1).  EXTRACT-Min 
takes O(V) time.  Total: O(V2+E) -> O(V2).
Second Case: Min-Priority Queue is implemented as a 
Fibonacci Heap.  The total running time for this will be 
O(V lgV + E ).  EXTRACT-Min will take O(lgV) and 
DECREASE-Key will take O(1).
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Conclusion

Dijksta’s algorithm has some similarity to both breadth-
first search (BFS) and Prim’s Algorithm for computing 
minimum spanning trees.  
BFS: Similar in that the set S corresponds to the set of 
black vertices in the BFS just as the vertices in S  
have their final shortest-path weights, so do black 
vertices in a BFS for their correct vertices.
Prim’s: Similar in that both algorithms use a min-
priority queue to find the “lightest” vertex outside a 
given set, add this vertex into the set, and adjust the 
weights of the remaining vertices outside the set 
accordingly.
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Questions?

?’s
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