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NP-Completeness
1.   Polynomial time algorithm
2. Polynomial time reduction
3.P vs NP

4.NP-completeness
(some slides by P.T. Uma University of Texas at 

Dallas are used)

Traveling Salesperson 
Problem
� Find minimum length tour that visits 

each city once and returns to the 
starting city.

Given a Problem

� Polynomial time algorithm ☺
– O(nk)       (n is the input size; k is a 

constant)

� Super-polynomial time algorithm /
(some people call it non-polynomial)

– O(2n), O(n!)

What’s the Big Deal?
� 2.20 GHz (Jan 2002)

(2.20 billion cycles per second)

� N = 30 cities  N! = 30! = 265 * 1030 tours
� Super-fast machine: compute 1 TSP tour in 1 

cycle.
� 2.20 billion TSP tours in 1 second.
� 120 * 1021 seconds
� 1 year = 31536000 s
� 38 * 1014 years!
� 3800 trillion years!!!
� Age of Earth = 4.6 billion years!

What’s the Big Deal?
� 2.53 GHz (Aug 2002)

(2.53 billion cycles per second)

� N = 30 cities  N! = 30! = 265 * 1030 tours
� Super-fast machine: compute 1 TSP tour in 1 

cycle.
� 2.53 billion TSP tours in 1 second.
� 104 * 1021 seconds
� 1 year = 31536000 s
� 32 * 1014 years!
� 3200 trillion years!!!
� Age of Earth = 4.6 billion years!

What’s the Big Deal?
� 3.06 GHz (Jan 2003)

(3.06 billion cycles per second)

� N = 30 cities  N! = 30! = 265 * 1030 tours
� Super-fast machine: compute 1 TSP tour in 1 

cycle.
� 3.06 billion TSP tours in 1 second.
� 86 * 1021 seconds
� 1 year = 31536000 s
� 27 * 1014 years!
� 2700 trillion years!!!
� Age of Earth = 4.6 billion years!



CS3230 (Algorithm)

2

Progress in Technology
� N = 30 cities  N! = 30! = 265 * 1030 tours
� Super-fast machine: compute 1 TSP tour in 1 cycle.
� Age of Earth (earth) = 4.6 billion years.
� Age of the Milky Way Galaxy (mwg) = 13 billion 

years.
� Age of the Universe (univ) = 15 billion years. 

Jan 2002
3800 trillion years
826, 086 earth
292, 307 mwg
253, 333 univ

Aug 2002
3200 trillion years
695, 652 earth
246, 153 mwg
213, 333 univ

Jan 2003
2700 trillion years
586, 956 earth
207, 692 mwg
180, 000 univ

Given a Problem

� Tractable or intractable?
� Tractable – give a polynomial time 

algorithm.
� Intractable – show the problem is NP-

complete and explore other means of 
solving the problem.

Given a Problem
� Tractable or intractable?
� Tractable – give a polynomial time 

algorithm.
� Intractable – show the problem is NP-

complete and explore other means of 
solving the problem.

Given a Problem
� Give an efficient polynomial time 

algorithm.
� 3 GHz ; 3 billion cycles/s ; 0.33 ns/cycle
� N = 1, 000, 000
� O(n) = 330 µs  
� O(n2) = 330 s = 5.5 minutes
� O(n3) = 330 million s = 10 years

1. NP-Completeness

Before defining P and NP, let's understand the 
differences between problem that require to

1)   give a YES or NO answer (decision problem)
2)   find the cost of the optimal solution
3)   find the optimal solution. 

for example
1) Does the graph contain a spanning tree with

weight at most 40?
2) What is the weight of the minimum spanning tree.
3) Find the minimum spanning tree

More Example: colouring

Given a graph G=<V,E>, we want to paint the vertices so
that for any (v,u) in E, the colour of v is different
from the colour of u.

1) COLD: On input G and an integer k, is G is k-colourable?
(a special case when k=3, is know as the 3-colour problem,
3COL).

2)  COLO: On input G what is the minimum number 
of colours required to paint the graph?

3)  COLC: On input G, find the way to paint the graph 
with minimum colours.
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More Example:  k-clique

Given a graph G=<V,E>,  we want to find a subgraph
of G that is a complete graph.    A graph is complete if
any two vertices are connected by an edge.   A complete
graph with k vertices is also known as a k-clique.

this graph contains a 4-clique

1)  CLQD: On input G and an integer k, determine whether 
G contains a k-clique.

2)  CLQO: On input G find the size of the largest clique.
3)  CLQC: Find the largest clique in G.

1. Polynomial time algorithm

A  algorithm is polynomial time if its worst-case running time
is in O(nk)  where n is the size of the input, and k is a constant
independent of n.

For example, 

quicksort is polynomial time O(n2).
mergesort is polynomial time O(n log n) which is also in O(n2). 
Prim's algorithm is polynomial time O(|V| log |V| + |E|).

if we take the (n=|V|+|E|) as the size of the input, then
Prim's algorithm is in O(n log n).

The following is not a polynomial time algorihtm.

1) input an n-bit integer M. 
2) for i=1 to M;  print i; end;

Note that the size of the problem is n.
The running time is   O(2n), which is not a polynomial.

2. Polynomial time reduction

Suppose we have an algorithm, known as the oracle,
that can determine whether a graph has a k-clique
in O(1) worst case  running time,  can we find the k-clique easily?

In other words, if we can solve the decision problem, 
can we solve the other 2 forms of problem?  

To find the size of the largest clique, we can ask the oracle
in the following way,

For i=n down to 1
If the graph contains a i-clique, return (i).

end

The worst case running time is O(n), which is a polynomial.
(the running time can be improved to O(log n)).

CLQO: On input G find the size of the largest clique.

1. Let T be the set of all vertices.  Let G' be the graph G.
2. Ask the oracle the size of the largest clique in G. Let k

be the size.
2. Select a vertex v from T.  Remove v and all edges incident

to v from G'. 
3. Ask the oracle about G'. Let k' be the size of the largest

clique in G'. 
4. If k not equal k', then put v and all edges

remove in step 2 back to G'.
5. Repeat step 2 to step 4 until T is empty.
6. Output G'.

The running time of the above is O(n2) where n is the number
of vertices in G.

Suppose we can solve CLQO in O(1) time, can we solve
CLQC efficiently?

3)  CLQC: Find the largest clique in G.
Definition:
Let A and B be two problems.   
We say that A is polynomially Turing reducible to B if

there exists a polynomial time algorithm for solving A 
if we could solve B in O(1) time. 

If A is polynomially Turing reducible to B, we write
A ≤ B   ( or B ≥ A)

If A ≤ B and B ≤ A, we say that A and B are polynomially
Turing equivalent, written as A = B.

If A ≤ B, we can view "B is more difficult or equal to A,  because if
we can solve B, then  we can solve A".
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Properties of reduction:
1) If A ≥ B and B ≥ C, then A  ≥ C.
2) A  ≥ A.

Recall that   CLQD ≥ CLQO and CLQO ≥ CLQC
Furthermore, it is clear that CLQC ≥ CLQD.

Thus we have  CLQD = CLQO = CLQC.

So, the 3 problems are actually equivalent.

Tutorial:
Show that COLD = COLO = COLC. 

Remark

This lecture note taking “short-cut” in defining polynomial Turing
reducible.     The notation used for polynomial Turing reducible is
usually    this : ≥T ,
which is to be distinguish from  polynomial many-to-one reducible,
usually denote as:   ≥m.

For polynomial many-to-one reducible, we can only call the oracle
once.  In polynomail Turing reducible, we can use it polynomial number
of times.

If you tell me that this graph is 3-colourable,

it is very difficult for me to check whether you are right.

But if you tell me that this graph is 3-colorable and
give me a solution, it is very easy for me to verify whether
you are right. 

Loosely speaking, problems that are difficult to compute, but 
easy to verify are known as Non-deterministic Polynomial.

P vs NP

Definition: P
P is the set of decision problems that can be solved by a

polynomial time algorithm.

Recall that an algorithm is polynomial time 
if its worst-case running time is in O(nk)  where n is the size 
of the input, and k is a constant independent of n.

For example,  let K1 be the problem where given an
input, output YES if the input is already sorted in increasing order.
Then,  K1 is the set of  sequences which are sorted,

K1 = {〈〉 , 〈1,2〉, 〈1,3〉 , 〈2,3〉, 〈1,2,3〉, 〈1,4〉.......        }

It is easy to write a linear time algorithm for K1, thus, 
K1 is in P  (or we simply write  K1 ∈P ).

We can represent a decision problem using a set, say  K.  An
instance  x is in K iff on input x, the output is YES.

More examples:

1. Let K2 be the  set of binary sequence whose binary representation
is dividable by 3.

K2 = { 11, 110, 1001, 1100, 1111,.....} ={3,6,9,12,15,...}
K2 is in P.  
(the length of the input "15" is 4, because 15 = 11112)

2.  Let K3 be the set of binary sequence whose binary representation
is a prime.

K3 = {10,11,101, 111, 1011, 1101,...}  ={2,3,5,7,11,13,...}

For many hundreds of years,  we don't have an algorithm that can solve K3 in
polynomial time, although people believe that there should be one.
Recently, researchers from India find a polynomial time algorithm, i.e. they
prove that K3 ∈ P.

3.  Let K4 be the set of weighted graphs whose Minimum Spanning
Tree have weight less than 30.    Then  K4∈P.
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Definition: NP (non-deterministic polynomial)
A decision problem K is NP iff, there exists a  Q∈P s.t.

x∈K  if and only if    there exists a y s.t. 〈x,y〉∈Q.

For example, let Q be the set of <x,y>,  where x is dividable
by y , where (y>1) and (x>y).  Here x and y are represented 
as binary sequences.
Q={ <100,10>,<110,10>,...... }

={ <4,2>,<6,2>,<6,3>,<8,2>,<8,4>,<9,3>,<10,2>,<10,5>,..}
Note that Q∈P.

Let K be the set of binary sequences, which represent a non-prime
number that is greater than 1.  (For many years, no one know whether
K∈P.  Recently,  researchers from India prove  that  K∈P).   
By the above definition, clearly,  K∈NP.
This is  because  a number x is non-prime iff 
there exists a y>1 and x>y s.t.  x is dividisible by y. 

For eg.,  135 is not a prime because <135,5>∈Q.   
13 is a prime because there don't exists any y  s.t.  <13,y>∈Q.    

So,  non-deterministic polynomial are problems that have a 
proof system that can be solved in polynomial time.

In other words, non-deterministic polynomial are problems that
can be easily verified in polynomial time.

The y in the definition is known as the witness or certificate or 
proof  that x∈K.

The problem Q is known as the proof system.

We say that a decision problem is 
decision-reducible  if,  given an oracle that solves the
decision problem in O(1) time, we can find the witness in
polynomial time.

More examples of NP problems.

1.  3COL   (3-colorability)   is in  NP.

2.  CLQD   (k-clique)        is in NP.

3. Given a sequence of integer, a1,a2,a3,....,an, and an integer k,
can we group them into k groups s.t.  the sum of each group is less than 50.

4. Partition problem.  Given a sequence of integers, a1,a2,a3,....,an,
can we group them into 2 groups  s.t. the sum of each group is the same.

5.  Packing: Given a set of template for the n parts in a jean, and 
k pieces of standard sized cloth.
Can we cut them out from k pieces of standard sized cloth.

In the optimization version, we want to know how to cut them 
from minimum number of standard sized cloth.

can we pack these into 2
standard sized cloth?

6.  Ship parking..
We have n ships,  where each ship is represented as

a circle with certain radius. (the radius depend on the size of the
ship).  Could we park these ships in the port? That is, pack the
circles with no overlap?  

marine paradeN

1.4 km

1 km

7. Scheduling.

Suppose our harbor has 2 docking facilities A and B. Thus we can
serve 2 ship concurrently.
Given a list of n ships,  and the expected docking  time 
and arrival time of each ship.  Can we assign the ship to either A or B
so that each ship will not wait for more than 3 hours, and the average
waiting time is less than 1 hour?

8. Scheduling.     Given the modules taken by n students,  can we
plan a two-week exam so that there is no crash, and each student
will take at most two exams in any 3 consecutive days.

time
0 1 2 3

So,  NP are important problems.

ship 1

ship 2

ship 3
ship 4

Hundreds of “NP-hard” problems are listed in 
M.R.Garey, D.S. Johnson,  Computers and Intractability: a guide to the
theory of NP-Completeness, 1979, Freeman. 
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Theorem P ⊆ NP

This theorem states that any problem that can be solved in 
polynomial time, can also be verified in polynomial time.

(this is so obviously true....)
In proof, let K be a problem in P.   Let us consider this
problem Q  which is defined as

Q = { <x,0>  | x ∈ K }.
Now, Q can be a proof system for K, and thus K ∈NP.
Since for any K ∈ P, we have K ∈ NP,  therefore   P ⊆NP.

Now, the million dollars open problem is, 

is NP ⊆ P  ?

if this is true (i.e, NP=P) , then any problem in NP can be 
solved efficiently.
A lot of researchers have worked on some NP problems 
but get no progress.   

So, there might be some problems  in NP that cannot be solved 
efficiently. (i.e. NP ≠P ).  

Unfortunately, we still don't know the answer. Most people
strongly believe that NP ≠P .

Definition: NP-hard
A decision problem K is NP-hard if

1)   K ≥ Y for every Y ∈ NP.

Definition:  NP-complete
A decision problem K is  NP-complete if

1)   K ∈ NP,  and 
2)   K is NP-hard.

The first definition  can be viewed as:   K is more difficult or equal to
any problem in NP.   

Note that a NP-complete problem K is the "ticket" to all NP problems.
If we can solve  K in polynomial time, then we can solve
ALL NP problems in polynomial time, and thus NP=P.

Conversely, if indeed NP ≠P , then a NP-complete problem
can not be solved in polynomial time.

Now the question is to find these NP-complete problems.

4.  NP-complete Theorem 

If K∈NP, and  K ≥ Y where Y is  NP-complete. 
Then K is NP-complete.

Another  NP problem  SAT-3-CNF

definition:  A literal is a Boolean or its negation or  1 or 0.
A 3-clause is a disjunction  ("or") of 3 literals.
A 3-CNF of  is a  conjunction ("and") of  3-clauses.

e.g.  A= (a+b+c)(a+c+d)(a+0+0)

B= (a+b+c)(a+b+0)(c+0+0)
The input is a 3-CNF with n variables.  Is there a way to 
assign 0/1 (TRUE/FALSE) to the variables so that the formula is
1 (TRUE).

in the above eg.  by assigning a=1, b=0, c=0, d=0, then A is 1.
Equation  B is always 0.

What can we do if a problem is NP-hard

1. Fast algorithm that find the solution for small input.

2. Algorithm that find approximate solution.

3. Algorithm that find solution for special type of instances.

Let OPT be the cost of the optimal solution. 
If we can find a solution with cost  APR,  such that

APR < ε OPT,           where  ε is a constant greater than 1.

then we  say that the  solution is a ε-approximation solution, and the
algorithm that find the approximation  solution is
called the ε-approximation algorithm.

Approximation Solution/Algorithm

Examples (approximation algo)

Traveling Salesman problem.

Input: A complete undirected graph G=<V,E> that has nonnegative
cost c(u,v) associated to each edge (u,v).

Output: A cycle (that is, a path that start and end at the some vertex)
that visits each vertex once,   with minimum cost. 

This is a NP-hard problem.   Let us now look at a special case where
the graph is an Euclidean Graph, and give
a 2-approximation algorithm. 
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Traveling salesman on Euclidean Graph (triangluar inequality)

1. Find the minimum spanning tree. 
(Note that the MST can be converted into a cycle.)

2.   Randomly select a vertex and designate it as the root.
3. Do a preorder traversal of the tree.
4. Return the cycle that visits the vertices in the  order computed in
step 3.

Algorithm  Approx-TSP
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optimalinput

MST MST gives a cycle..
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Claim:  Approx-TSP is a 2-approximation algorithm.

Let H* be the optimal cycle, and let T be the MST.
By removing any edge from H*, it become a spanning tree. Thus

cost (T)  ≤ cost (H*).

The cycle obtained from T in step 1  traverses every edges in T twice. 
Let W be this cycle.   Clearly

cost (W) = 2 cost (T).

Note that W is not a solution, because  vertices are visited twice.
Now, just remove the repeating vertices. If W visits the vertices in
this order..

......  v1, v2, v3, .....
By removing v2, we will visit v3  after visiting v1,.  That is,  the
edge from (v1,v2) and (v2,v3) will be replace by the edge (v1,v3).
By triangular inequality,  

the length of (v1,v3) ≤ lenght of (v1,v2) + lenght of (v2,v3) .
Let H be the cycle obtained by removing all repeating vertices.
We have    cost (H) ≤ cost (W)  = 2 cost (T) < 2 cost (H*).
Thus                    cost (H) ≤ 2 cost (H*)

Remark on Approximation algorithm

•Note, however,  that there are problem that does not
have approximation algorihtm (unless P=NP).

For example, we can prove that, unless P=NP,
TSP on general graph does not have an 
c-approximation algorithm, where
c is a constant. 


