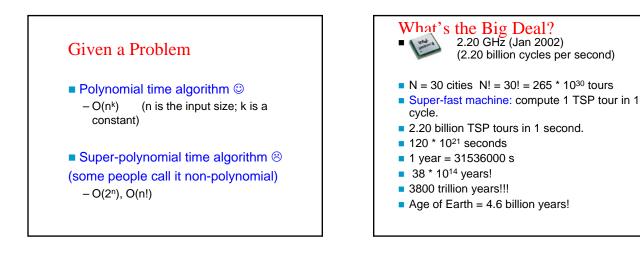
NP-Completeness

- 1. Polynomial time algorithm
- 2. Polynomial time reduction
- 3.P vs NP

4.NP-completeness

(some slides by P.T. Uma University of Texas at Dallas are used)

Traveling Salesperson Problem Find minimum length tour that visits each city once and returns to the starting city.



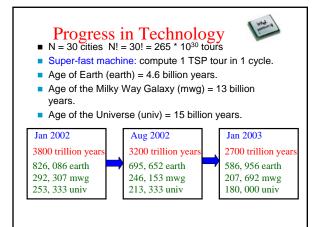
What's the Big Deal?

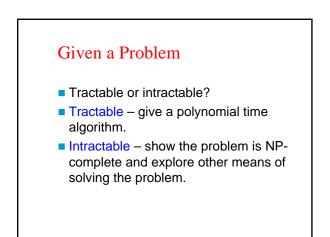
2.53 GHz (Aug 2002)

- (2.53 billion cycles per second)
- N = 30 cities N! = 30! = 265 * 10³⁰ tours
- Super-fast machine: compute 1 TSP tour in 1 cycle.
- 2.53 billion TSP tours in 1 second.
- 104 * 10²¹ seconds
- 1 year = 31536000 s
- 32 * 10¹⁴ years!
- 3200 trillion years!!!
- Age of Earth = 4.6 billion years!

What's the Big Deal? 3.06 GHz (Jan 2003) (3.06 billion cycles per second) N = 30 cities N! = 30! = 265 * 10³⁰ tours Super-fast machine: compute 1 TSP tour in 1 cycle. 3.06 billion TSP tours in 1 second. 86 * 10²¹ seconds 1 year = 31536000 s 27 * 10¹⁴ years! 2700 trillion years!!!

Age of Earth = 4.6 billion years!





Given a Problem

- Tractable or intractable?
- Tractable give a polynomial time algorithm.
- Intractable show the problem is NPcomplete and explore other means of solving the problem.

Given a Problem

- Give an efficient polynomial time algorithm.
- 3 GHz ; 3 billion cycles/s ; 0.33 ns/cycle
- N = 1, 000, 000
- O(n) = 330 μs
- O(n²) = 330 s = 5.5 minutes
- O(n³) = 330 million s = 10 years

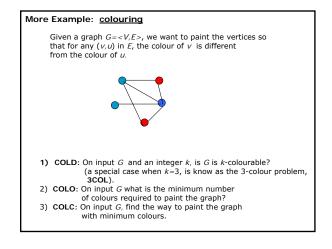
1. NP-Completeness

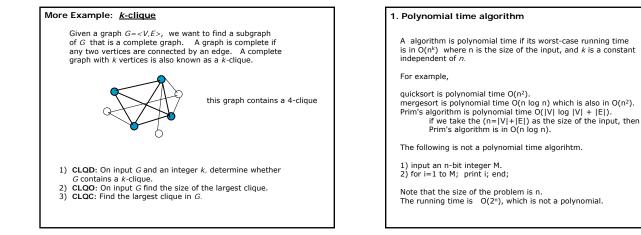
Before defining P and NP, let's understand the differences between problem that require to

- give a YES or NO answer (*decision problem*)
 find the cost of the optimal solution
- find the cost of the optimal so
 find the optimal solution.
- 3) find the optimal solution.

for example

 Does the graph contain a spanning tree with weight at most 40?
 What is the weight of the minimum spanning tree.
 Find the minimum spanning tree





2. Polynomial time reduction

Suppose we have an algorithm, known as the oracle, that can determine whether a graph has a k-clique in O(1) worst case running time, can we find the k-clique easily?

In other words, if we can solve the decision problem, can we solve the other 2 forms of problem?

CLQO: On input G find the size of the largest clique.

To find the size of the largest clique, we can ask the oracle in the following way,

For i=n down to 1 If the graph contains a *i*-clique, return (i). end

The worst case running time is O(n), which is a polynomial. (the running time can be improved to $O(\log n)$).

Suppose we can solve CLQO in O(1) time, can we solve CLQC efficiently?

- 3) CLQC: Find the largest clique in G.
- 1. Let T be the set of all vertices. Let G' be the graph G.
- 2. Ask the oracle the size of the largest clique in $\ensuremath{\mathsf{G}}$. Let $\ensuremath{\mathsf{k}}$
- be the size.
- Select a vertex v from T. Remove v and all edges incident to v from G'.
- 3. Ask the oracle about G'. Let ${\bf k}^{\prime}$ be the size of the largest
- clique in G
- If k not equal k', then put v and all edges remove in step 2 back to G'.
- 5. Repeat step 2 to step 4 until T is empty.
- 6. Output G'

The running time of the above is $O(n^2)$ where *n* is the number of vertices in G

Definition:

Let A and B be two problems. We say that A is polynomially Turing reducible to B if there exists a polynomial time algorithm for solving A if we could solve B in O(1) time.

If A is polynomially Turing reducible to B, we write $A \leq B$ (or $B \geq A$)

If $A \le B$ and $B \le A$, we say that A and B are polynomially Turing equivalent, written as A = B.

If $A \leq B$, we can view "B is more difficult or equal to A, because if we can solve B, then we can solve A".

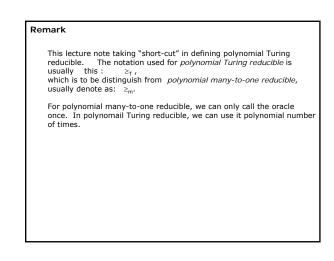
$\begin{array}{ll} \mbox{Properties of reduction:}\\ \mbox{1) If } A \geq B \mbox{ and } B \geq C, \mbox{ then } A \ \geq C.\\ \mbox{2) } A \ \geq \ A. \end{array}$

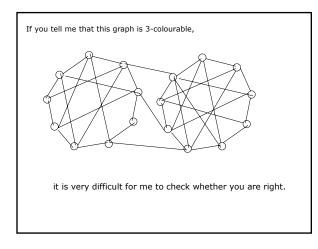
Recall that $CLQD \ge CLQO$ and $CLQO \ge CLQC$ Furthermore, it is clear that $CLQC \ge CLQD$.

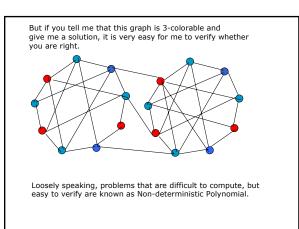
Thus we have CLQD = CLQO = CLQC.

So, the 3 problems are actually equivalent.

Tutorial: Show that COLD = COLO = COLC.







More examples:

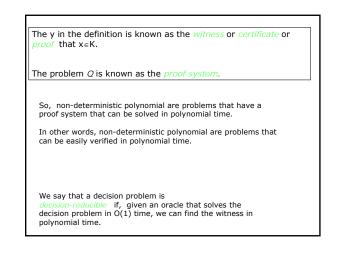
1. Let K_2 be the set of binary sequence whose binary representation is dividable by 3. $K_2 = \{11, 110, 1001, 1100, 1111, \dots\} = \{3,6,9,12,15,\dots\}$ K_2 is in P. (the length of the input "15" is 4, because 15 = 1111₂) 2. Let K_3 be the set of binary sequence whose binary representation is a prime. $K_3 = \{10,11,101, 111, 1011, 1101,\dots\} = \{2,3,5,7,11,13,\dots\}$ For many hundreds of years, we don't have an algorithm that can solve K_3 in polynomial time, although people believe that there should be one. Recently, researchers from India find a polynomial time algorithm, i.e. they prove that $K_3 \in P$. 3. Let K_4 be the set of weighted graphs whose Minimum Spanning Tree have weight less than 30. Then $K_4 \in P$.

For example, let Q be the set of <x,y>, where x is dividable by y, where (y>1) and (x>y). Here x and y are represented as binary sequences. Q={ <100,10>,<110,10>,.....} = { <4,2>,<6,2>,<6,3>,<8,2>,<8,4>,<9,3>,<10,2>,<10,5>,..}

 $=\{ \langle 4,2 \rangle, \langle 6,2 \rangle, \langle 6,3 \rangle, \langle 8,2 \rangle, \langle 8,4 \rangle, \langle 9,3 \rangle, \langle 10,2 \rangle, \langle 10,5 \rangle, \}$ Note that QeP.

Let K be the set of binary sequences, which represent a non-prime number that is greater than 1. (For many years, no one know whether K K=P. Recently, researchers from India prove that K eP. By the above definition, clearly, K eNP. This is because a number x is non-prime iff there exists a y>1 and x>y s.t. x is dividisible by y.

For eg., 135 is not a prime because <135,5> \in Q. 13 is a prime because there don't exists any y s.t. <13,y> \in Q.

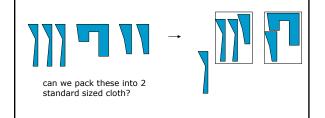


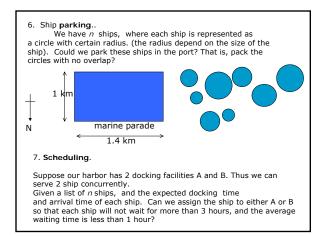
More examples of NP problems.

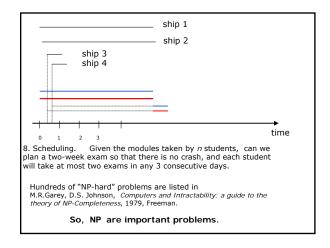
- 1. 3COL (3-colorability) is in NP.
- 2. CLQD (k-clique) is in NP.
- 3. Given a sequence of integer, $a_1,a_2,a_3,...,a_n$, and an integer k_i can we group them into k groups s.t. the sum of each group is less than 50.
- 4. Partition problem. Given a sequence of integers, $a_{1\nu}a_2,a_3,\ldots,a_{n\nu}$ can we group them into 2 groups s.t. the sum of each group is the same.

Packing: Given a set of template for the *n* parts in a jean, and *k* pieces of standard sized cloth.
 Can we cut them out from *k* pieces of standard sized cloth.

In the optimization version, we want to know how to cut them from minimum number of standard sized cloth.







Theorem P \subseteq NP	Now, the million dollars open problem is,
This theorem states that any problem that can be solved in polynomial time, can also be verified in polynomial time. (this is so obviously true) In proof, let K be a problem in P. Let us consider this problem Q which is defined as $Q = \{ \mid x \in K \}$. Now, Q can be a proof system for K, and thus K \in NP. Since for any K \in P, we have K \in NP, therefore P \subseteq NP.	is NP⊆P ? if this is true (i.e, NP=P), then any problem in NP can be solved efficiently. A lot of researchers have worked on some NP problems but get no progress. So, there might be some problems in NP that cannot be solved efficiently. (i.e. NP ≠P). Unfortunately, we still don't know the answer. Most people strongly believe that NP ≠P.

4. NP-complete

Definition: NP-hard

A decision problem K is NP-hard if 1) $K \ge Y$ for every $Y \in NP$.

Definition: NP-complete

A decision problem K is NP-complete if 1) $K \in NP$, and

2) K is NP-hard.

The first definition can be viewed as: K is more difficult or equal to any problem in NP.

Note that a NP-complete problem K is the "ticket" to all NP problems. If we can solve K in polynomial time, then we can solve ALL NP problems in polynomial time, and thus NP=P.

Conversely, if indeed NP \neq P , then a NP-complete problem can not be solved in polynomial time.

Now the question is to find these NP-complete problems.

If $K \in NP$, and $K \ge Y$ where Y is NP-complete. Then K is NP-complete.

Another NP problem SAT-3-CNF

definition: A literal is a Boolean or its negation or 1 or 0. A 3-*clause* is a disjunction ("or") of 3 literals. A 3-*cNF* of is a conjunction ("and") of 3-clauses.

e.g. A= $(\overline{a}+\overline{b}+c)(a+\overline{c}+d)(a+0+0)$

B = (a+b+c)(a+b+0)(c+0+0)The input is a 3-CNF with n variables. Is there a way to assign 0/1 (TRUE/FALSE) to the variables so that the formula is 1 (TRUE)

in the above eg. by assigning a=1, b=0, c=0, d=0, then A is 1. Equation B is always 0.

What can we do if a problem is NP-hard

- 1. Fast algorithm that find the solution for small input.
- 2. Algorithm that find approximate solution.
- 3. Algorithm that find solution for special type of instances.

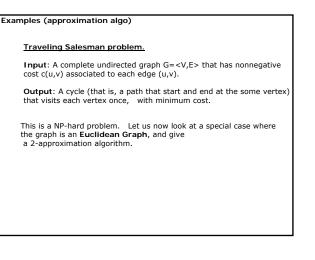
Approximation Solution/Algorithm

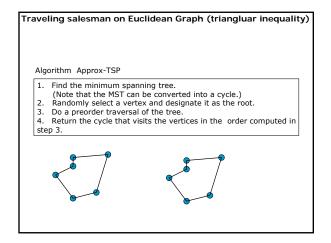
Let OPT be the cost of the optimal solution. If we can find a solution with cost APR, such that

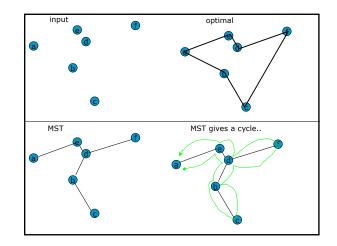
APR < ϵ OPT,

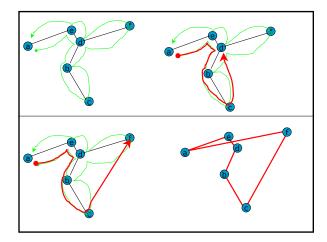
where $\ \epsilon$ is a constant greater than 1.

then we say that the solution is a $\epsilon\text{-approximation}$ solution, and the algorithm that find the approximation solution is called the ϵ -approximation algorithm.









Claim: Approx-TSP is a 2-approximation algorithm.

Let H* be the optimal cycle, and let T be the MST. By removing any edge from H*, it become a spanning tree. Thus

 $cost(T) \leq cost(H^*).$

The cycle obtained from T in step 1 traverses every edges in T twice. Let W be this cycle. Clearly cost(W) = 2 cost(T).

Note that W is not a solution, because vertices are visited twice. Now, just remove the repeating vertices. If W visits the vertices in this order ...

Remark on Approximation algorithm

•Note, however, that there are problem that does not have approximation algorihtm (unless P=NP).

For example, we can prove that, unless P=NP, TSP on general graph does not have an c-approximation algorithm, where c is a constant.