
1

Topic 3: Intelligent Agents
(Lecture notes by W.Hsu are used)

Today’s Reading: Chapter 2, Russell and Norvig or/and
Luger 1.1.4
Intelligent Agent (IA) Design
• Shared requirements, characteristics of IAs
• Methodologies

– Software agents
– Reactivity vs. state
– Knowledge, inference, and uncertainty

Intelligent Agent Frameworks
• Reactive
• With state
• Goal-based
• Utility-based

Agent: Definition
• Any entity that perceives its environment through sensors and

acts upon that environment through effectors
• Examples (class discussion): human, robotic, software agents

Perception
• Signal from environment
• May exceed sensory capacity

Sensors
• Acquires percepts
• Possible limitations

Action
• Attempts to affect environment
• Usually exceeds effector capacity

Effectors
• Transmits actions
• Possible limitations

Agent

Intelligent Agents:Overview

Percepts

Environment

Sensors

Effectors
Actions

?

How Agents Should Act
Rational Agent: Definition
• Informal: “does the right thing, given what it believes from

what it perceives”
• What is “the right thing”?

– First approximation: action that maximizes success of
agent

– Limitations to this definition?
• Issues to be addressed now

– How to evaluate success
– When to evaluate success

• Issues to be addressed later in this course
– Uncertainty (in environment, in actions)
– How to express beliefs, knowledge

How Agents Should Act
Why Study Rationality?
• Recall: aspects of intelligent behavior (last lecture)

– Engineering objectives: optimization, problem solving,
decision support

– Scientific objectives: modeling correct inference, learning,
planning

• Rational cognition: formulating plausible beliefs, conclusions
• Rational action: “doing the right thing” given beliefs

Rational Agents
“Doing the Right Thing”
• Committing actions

– Limited to set of effectors
– In context of what agent knows

• Specification (cf. software specification)
– Preconditions, postconditions of operators
– Caveat: not always perfectly known (for given

environment)
– Agent may also have limited knowledge of

specification

Rational Agents
Agent Capabilities: Requirements
• Choice: select actions (and carry them out)
• Knowledge: represent knowledge about environment
• Perception: capability to sense environment
• Criterion: performance measure to define degree of

success

Possible Additional Capabilities
• Memory (internal model of state of the world)
• Knowledge about effectors, reasoning process (reflexive

reasoning)

2

Measuring Performance
Performance Measure: How to Determine Degree of
Sucesss
• Definition: criteria that determine how successful agent

is

• Clearly, varies over
– Agents
– Environments

• Possible measures?
– Subjective (agent may not have capability to give

accurate answer!)
– Objective: outside observation

Measuring Performance
• Example: web crawling agent

– Number of hits
– Number of relevant hits
– Ratio of relevant hits to pages explored, resources

expended
– Caveat: “you get what you ask for” (issues:

redundancy, etc.)
When to Evaluate Success
• Depends on objectives (short-term efficiency,

consistency, etc.)
• Is task episodic? Are there milestones?

Reinforcements? (e.g., games)

Knowledge in Agents
Rationality versus Omniscience
• Nota Bene (NB): not the same
• Distinction

– Omniscience: knowing actual outcome of all actions
– Rationality: knowing plausible outcome of all actions
– Example: is crossing the street to greet a friend too

risky?
• Key question in AI

– What is a plausible outcome?

– Especially important in knowledge-based expert
systems

– Of practical important in planning, machine learning

Knowledge in Agents

• Related questions
– How can an agent make rational decisions given

beliefs about outcomes of actions?

– Specifically, what does it mean (algorithmically) to
“choose the best”?

Limitations of Rationality
• Based only on what agent can perceive and do
• Based on what is “likely” to be right, not what “turns

out” to be right

What Is Rational?
Criteria
• Determines what is rational at any given time

• Varies with agent, environment, situation

Performance Measure
• Specified by outside observer or evaluator
• Applied (consistently) to (one or more) IAs in given

environment
Percept Sequence
• Definition: entire history of percepts gathered by agent
• NB: may or may not be retained fully by agent (issue:

state and memory)

What Is Rational?
Agent Knowledge
• Of environment – “required”
• Of self (reflexive reasoning)

Feasible Action
• What can be performed
• What agent believes it can attempt?

3

Ideal Rationality
Ideal Rational Agent
• Given: any possible percept sequence
• Do: ideal rational behavior

– Whatever action is expected to maximize
performance measure

– NB: expectation – informal sense (for now);
mathematical foundation soon

• Basis for action
– Evidence provided by percept sequence
– Built-in knowledge possessed by the agent

Ideal Rationality
Ideal Mapping from Percepts to Actions
• Figure 2.2, R&N
• Mapping p: percept sequence → action

– Representing p as list of pairs: infinite (unless
explicitly bounded)

– Using p: specifies ideal mapping from percepts to
actions (i.e., ideal agent)

– Finding explicit p: in principle, could use trial and
error

– Other (implicit) representations may be easier to
acquire!

Autonomy
Built-In Knowledge
• What if agent ignores percepts?

• Possibility
– All actions based on agent’s own knowledge
– Agent said to lack autonomy

• Examples
– “Preprogrammed” or “hardwired” industrial robots
– Clocks
– Other sensorless automata
– NB: to be distinguished from closed versus open

loop systems

Autonomy[2]

Justificiation for Autonomous Agents
• Sound engineering practice: “Intelligence demands

robustness, adaptivity”
• This course: mathematical and CS basis of autonomy

in IAs

Structure of Intelligent Agents
Agent Behavior
• Given: sequence of percepts
• Return: IA’s actions

– Simulator: description of results of actions
– Real-world system: committed action

Agent Programs
• Functions that implement program

• Assumed to run in computing environment
(architecture)
– Hardware architecture: computer organization
– Software architecture: programming languages,

operating systems
• Agent = architecture + program

Example:Automated Taxi Driver
Agent Type: Taxi Driver
Percepts
• Visual: cameras
• Profilometer: speedometer, tachometer, odometer
• Other: GPS, sonar, interactive (microphone)

Actions
• Steer, accelerate, brake
• Talk to passenger

4

Example:Automated Taxi Driver[2]
Goals
• Safe, legal, fast, comfortable
• Maximize profits

Environment
• Roads
• Other traffic, pedestrians
• Customers

Discussion: Performance Requirements for Open Ended
Task

Agent Framework:
Simple Reflex Agents [1]

Agent Sensors

Effectors

Condition-Action
Rules

What action I
should do now

Environm
ent

Agent Framework:
Simple Reflex Agents [2]

Implementation and Properties
• Instantiation of generic skeleton agent: Figure 2.8
• function SimpleReflexAgent (percept) returns action

– static: rules, set of condition-action rules
– state ← Interpret-Input (percept)
– rule ← Rule-Match (state, rules)
– action ← Rule-Action {rule}
– return action

Agent Framework:
Simple Reflex Agents [3]

Advantages
• Selection of best action based only on current state of

world and rules
• Simple, very efficient
• Sometimes robust

Limitations and Disadvantages
• No memory (doesn’t keep track of world)
• Limits range of applicability

Agent Frameworks:
(Reflex) Agents with State [1]

Agent Sensors

Effectors

Condition-Action
Rules

What action I
should do now

Environm
ent

State

How world evolves

What my actions do

What world is
like now

Agent Frameworks:
(Reflex) Agents with State [2]

Implementation and Properties
• Instantiation of generic skeleton agent: Figure 2.10
• function ReflexAgentWithState (percept) returns action

– static: state, description of current world state;
rules, set of condition-action rules

– state ← Update-State (state, percept)
– rule ← Rule-Match (state, rules)
– action ← Rule-Action {rule}
– return action

5

Agent Frameworks:
(Reflex) Agents with State [3]

Advantages
• Selection of best action based only on current state of

world and rules
• Able to reason over past states of world
• Still efficient, somewhat more robust

Limitations and Disadvantages
• No way to express goals and preferences relative to

goals
• Still limited range of applicability

Agent Frameworks:
Goal-Based Agents [1]

Agent Sensors

Effectors

Goals What action I
should do now

Environm
ent

State

How world evolves

What my actions do

What world is
like now

What it will be
like if I do
action A

Agent Frameworks:
Goal-Based Agents [2]

Implementation and Properties

• Instantiation of generic skeleton agent: Figure 2.11

• Functional description

– Chapter 13: classical planning

– Requires more formal specification

Agent Frameworks:
Goal-Based Agents [3]

Advantages

• Able to reason over goal, intermediate, and initial states

• Basis: automated reasoning

– One implementation: theorem proving (first-order
logic)

– Powerful representation language and inference
mechanism

Limitations and Disadvantages

• Efficiency limitations: can’t feasible solve many general
problems

• No way to express preferences

Agent Frameworks:
Utility-Based Agents [1]

Agent Sensors

Effectors

Utility What action I
should do now

Environm
ent

State

How world evolves

What my actions do

What world is
like now

What it will be
like if I do A

How happy will
I be

Agent Frameworks:
Utility-Based Agents [2]

Implementation and Properties
• Instantiation of generic skeleton agent: Figure 2.8
• function SimpleReflexAgent (percept) returns action

– static: rules, set of condition-action rules
– state ← Interpret-Input (percept)
– rule ← Rule-Match (state, rules)
– action ← Rule-Action (rule)
– return action

6

Agent Frameworks:
Utility-Based Agents [3]

Advantages
• Selection of best action based only on current state of

world and rules
• Simple, very efficient
• Sometimes robust

Limitations and Disadvantages
• No memory (doesn’t keep track of world)
• Limits range of applicability

Looking Ahead: Search
Solving Problems by Searching

• Problem solving agents: design, specification,
implementation

• Specification components
– Problems – formulating well-defined ones
– Solutions – requirements, constraints

• Measuring performance

Formulating Problems as (State Space) Search
Data Structures Used in Search

Problem-Solving Agents [1]:
Preliminary Design

Justification
• Rational IAs: act to reach environment that maximizes

performance measure
• Need to formalize, operationalize this definition

Practical Issues
• Hard to find appropriate sequence of states

• Difficult to translate into IA design
Goals
• Chapter 2, R&N: simplifies task of translating agent

specification to formal design
• First step in problem solving: formulation of goal(s) –

“accept no substitutes”
• Chapters 3-4, R&N: goal ≡ {world states | goal test is

satisfied}

Problem-Solving Agents [2]:
Preliminary Design

Problem Formulation
• Given: initial state, desired goal, specification of actions
• Find: achievable sequence of states (actions) mapping

from initial to goal state
Search
• Actions: cause transitions between world states (e.g.,

applying effectors)
• Typically specified in terms of finding sequence of

states (operators)

Problem-Solving Agents [1]:Specification

Input: Informal Objectives; Initial, Intermediate, Goal
States; Actions
Output
• Path from initial to goal state
• Leads to design requirements for state space search

problem
Logical Requirements
• States: representation of state of world (example:

starting city, graph representation of Romanian map)
• Operators: descriptors of possible actions (example:

moving to adjacent city)
• Goal test: state → boolean (example: at destination

city?)
• Path cost: based on search, action costs (example:

number of edges traversed)

Problem-Solving Agents [2]:
Specification

Operational Requirements
• Search algorithm to find path
• Objective criterion: minimum cost (this and next 3

lectures)
Environment
• Agent can search in environment according to

specifications
• Sometimes has full state and action descriptors;

sometimes not!

