Radial Basis Function Neural Networks

Topic 8-3

Note: lecture notes by Michael Negnevitsky (U of Tasmania, Australia) and Bob Keller (Harvey Mudd College, CA) are used

Main idea: change the activation function

- In contrast to sigmoidal functions, radial basis functions have radial symmetry about a center in n-space ($\mathrm{n}=$ \# of inputs).
- The farther from the center the input is, the less the activation.
- This models the "on-center off-surround" phenomenon found in certain real neurons in the visual system, for example.

Main idea: geometry

LGN is a folded sheet of neurons (1.5 million cells), about the size of a credit card but about three times as thick, found on each side of the brain. The ganglion cells of the LGN transform the signals into a temporal series e electrical impulses called action potentials or spikes. Th ganglion cell responses are measured by recording the temporal pattern action potentials caused by light stimulation.
The receptive fields of the LGN neurons are circularly symmetric and have the same center-surround organization. The algebraic sum of the center and surround mechanisms has a vague resemblance to a sombrero with a tall peak, so this model of the receptive field is sometimes called Mexican-nat moued. When the spatial proines of center and suirowe to as the "difference-of-Gaussians" model.

Example: XOR with RBF

- How to choose parameters to realize xor with
- Since output is linear, would need to add a
limiter to the general RBF.
Example: XOR with RBF
- Choose centers at (1,0), and (1,0).
.
Choose centers at $(1,0)$, and (1,
Choose spreads as, say 0.1 , find weights.
.

RBF properties

- RBF networks tend to have good interpolation properties, but not as good extrapolation properties as MLP's. For extrapolation, using a given number of neurons, an MLP could be a much better fit.
- With proper setup, RBFNs can train in time orders of magnitude faster than backpropagation.
- RBFNs enjoy the same universal approximation properties as MLPs: given sufficient neurons, any reasonable function can be approximated (with just 2 layers)

Example: matlab newrb

\% NEWRB(PR,T,GOAL,SPREAD,MN,DF) takes these arguments, $\% \mathrm{P}$ - RxQ matrix of Q input vectors.
$\%$ T - SxQ matrix of Q target class vectors.
$\%$ GOAL - Mean squared error goal, default $=0.0$.
$\%$ SPREAD - Spread of radial basis functions, default $=1.0$.
\% MN - Maximum number of neurons, default is Q.
$\%$ and returns a new radial basis network.
\% The larger that SPREAD is the smoother the function approximation
$\%$ will be. Too large a spread means a lot of neurons will be
\% required to fit a fast changing function. Too small a spread
$\%$ means many neurons will be required to fit a smooth function,
\% and the network may not generalize well. Call NEWRB with
$\%$ different spreads to find the best value for a given problem.

Demo: spreads are too small Here spreads $=0.01$ (vs. 1.0 in previous case). The network does not generalize. Trasing Vectors

Demo: spreads are too large Here spreads $=100$. The network over-generalizes.

Some tricks on RBF NN training

- Training for centers and spreads is apparently very slow.
- So some have taken the approach of
computing these parameters by other means and just training for the weights (at most).

RBF training for weights, centers and spread
using gradient descen

$$
\begin{gathered}
\text { Error }=\varepsilon=\frac{1}{2} \sum_{j=1}^{N} e_{j}^{2} \quad \quad \quad(\mathrm{j} \text { is the sample index) } \\
e_{j}=d_{j}-\sum_{i=1}^{M} w_{k} \varphi\left(\left\|\mathbf{x}_{j}-\mathbf{t}_{i}\right\|\right) \\
G\left(\mid \mathbf{x}_{j}-\mathbf{t}_{i} \|_{C}\right)=\varphi\left(\mid \mathbf{x}_{j}-\mathbf{t}_{i} \|\right)
\end{gathered}
$$

G' represents the first derivative
of the function wrt its argument

Solving approach for RBE NN

- Assume the spreads are fixed.
- Choose the N data points themselves as centers.
- It remains to find the weights.

■ Define $\varphi_{\mathrm{ji}}=\varphi\left(\left\|\mathrm{x}_{\mathrm{i}}-\mathrm{x}_{\mathrm{j}}\right\|\right)$ where φ is the radial basis function, $\mathrm{x}_{\mathrm{i}}, \mathrm{x}_{\mathrm{j}}$ are training samples.

- The matrix Φ of values φ_{ji} is called the interpolation matrix.

Solving approach for RBF NN

- The interpolation matrix has the property that
$\Phi \mathbf{w}=\mathbf{d}$ where
w is the weight vector
d is the desired output vector over all training samples (since the samples are both data points and centers).
- If Φ is non-singular, then we can solve for weights as w = $\Phi^{-1} \mathbf{d}$

Bias-Variance dilemma
 or how to choose the numbers

- Two devils: approximation error vs. overfitting on training set
- Reason for overfitting: too large model does not get an ability to generalize
- How to discover this: while moving from training to testing set
- Errors do increase but should not too much

Selecting centers by clustering

- One center per training sample may be overkill.
- There are ways to select centers as
representatives among
clusters, given say a
fixed number of
representatives.

K-means clustering

- This determines which points belong to which clusters, as well as the centers of those clusters. The desired number \mathbf{k} of clusters is specified.
Initialize k centers, e.g. by choosing them to be k distinct data points.
- Repeat

For each data point, determine which center is closest. This determines each point's cluster for the current iteration.

Compute the centroid (mean) of the points in each cluster. Make this the centers for the next iteration.

- until centers don't differ appreciably from their previous value.

K-means clustering

MLP vs RBF Case Studies
(source: Yampolskiy and Novikov, RIT)

Source	Application	MLP	RBF
Dong	Ste		Faster runt
Finan	Speaker recognition		$\begin{aligned} & \text { More accurate, } \\ & \text { less sensitive to } \\ & \text { bad training data } \end{aligned}$
Hawicknorst	Speech recognition		Faster training, better retention of generalization
L	Surgical decision making	$\begin{array}{\|l} \hline \begin{array}{l} \text { Fewer hidden } \\ \text { nodes } \end{array} \\ \hline \end{array}$	Shorter training time. lower errors
Lu	Channel Equalization	Statistically insignnificant differencess	
Park	Nonlinear system identification		$\begin{aligned} & \text { Better } \\ & \text { convergence to } \\ & \text { global min.. less } \\ & \text { retraing time } \end{aligned}$
Roppel	Odor recognition		

