
Topic 8
Artificial neural networks:Artificial neural networks:
Supervised learning part 2Supervised learning part 2
Multilayer neural networksMultilayer neural networks
Accelerated learning in multilayer neural networksAccelerated learning in multilayer neural networks

Multilayer neural networksMultilayer neural networks
A multilayer A multilayer perceptronperceptron is a is a feedforwardfeedforward neural neural 
network with one or more hidden layers.  network with one or more hidden layers.  
The network consists of an The network consists of an input layerinput layer of source of source 
neurons, at least one middle or neurons, at least one middle or hidden layerhidden layer of of 
computational neurons, and an computational neurons, and an output layeroutput layer of of 
computational neurons.  computational neurons.  
The input signals are propagated in a forward The input signals are propagated in a forward 
direction on a layerdirection on a layer--byby--layer basis.layer basis.

Multilayer neural networks
Generally much more versatile than single 
neurons
No linear separability requirement.
Training is less obvious and potentially more 
time consuming.
Several varieties, the most common of which is 
known as:

MLP (Multi-Level Perceptron)
Backpropagation Network (alluding to a common 

method of training these networks; other training 
methods could conceivably be used.)

Multilayer Multilayer perceptronperceptron with two hidden layerswith two hidden layers What does the middle layer hide?What does the middle layer hide?
A hidden layer “hides” its desired output.  A hidden layer “hides” its desired output.  
Neurons in the hidden layer cannot be observed Neurons in the hidden layer cannot be observed 
through the input/output behaviour of the network.  through the input/output behaviour of the network.  
There is no obvious way to know what the desired There is no obvious way to know what the desired 
output of the hidden layer should be. output of the hidden layer should be. 
Commercial Commercial ANNsANNs incorporate three and incorporate three and 
sometimes four layers, including one or two sometimes four layers, including one or two 
hidden layers.  Each layer can contain from 10 to hidden layers.  Each layer can contain from 10 to 
1000 neurons.  Experimental neural networks may 1000 neurons.  Experimental neural networks may 
have five or even six layers, including three or have five or even six layers, including three or 
four hidden layers, and utilise millions of neurons.four hidden layers, and utilise millions of neurons.

How to train a MLP?
With a single neuron, it is not too hard to see 

how to
adjust the weights based upon the error values.
With a multi-layer network, it is less obvious. 

For one thing, what is the “error” for the neurons 
in nonfinal layers? Without these, we don’t 
know how to adjust.

This is called the “credit assignment” problem 
(maybe should be “blame assignment”).



Backpropagation
Werbos, in his Harvard PhD thesis in 1974 found a 
method.
Rumelhart and McClelland, in 1985  discovered the 
method, presumably independently, and 
popularized it under the current name.
In mathematics, such methods are in the category 
of “optimization”. 
The technique is gradient descent, as for Adalines.
However, the computation of the gradient is less 
clear.

BackBack--propagation neural networkpropagation neural network

Learning in a multilayer network proceeds the Learning in a multilayer network proceeds the 
same way as for a same way as for a perceptronperceptron.  .  
A training set of input patterns is presented to the A training set of input patterns is presented to the 
network.  network.  
The network computes its output pattern, and if The network computes its output pattern, and if 
there is an error there is an error −− or in other words a difference or in other words a difference 
between actual and desired output patterns between actual and desired output patterns −− the the 
weights are adjusted to reduce this error.weights are adjusted to reduce this error.

In a backIn a back--propagation neural network, the learning propagation neural network, the learning 
algorithm has two phases.  algorithm has two phases.  
First, a training input pattern is presented to the First, a training input pattern is presented to the 
network input layer.  The network propagates the network input layer.  The network propagates the 
input pattern from layer to layer until the output input pattern from layer to layer until the output 
pattern is generated by the output layer.  pattern is generated by the output layer.  
If this pattern is different from the desired output, If this pattern is different from the desired output, 
an error is calculated and then propagated an error is calculated and then propagated 
backwards through the network from the output backwards through the network from the output 
layer to the input layer.  The weights are modified layer to the input layer.  The weights are modified 
as the error is propagated.as the error is propagated.

ThreeThree--layer backlayer back--propagation neural networkpropagation neural network
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Backpropagation training cycle
Forward propagation: Derive the activation values (the inputs to 
the activation functions) at each neuron, and the final output.
Compute the error in the output.
Backpropagate the error through the network to get 
“sensitivities” at each neuron. (The gradient approximation is 
derivable from the sensitivities.)
Use the sensitivities to derive weight changes.
Apply the weight changes. 
Backpropagate is mathematically a lot like forward 
propagate.
Sensitivities are used instead of signal values.
The sensitivities are the partial derivatives of the MSE with 
respect to the activation values.
Basically both are iterated matrix multiplications.

Backpropagation
Given an input vector, can compute the outputs.
Given a sample, can compute the errors in output.
Knowing gradient, can adjust the weights.

Big Question: How to compute the gradient?
Recall that the gradient consists of components 

∆J/ ∆w
where J is the mean-squared error and w is some 

weight (or bias) in the network.
For the Adaline, already derived: 
∆ J/ ∆ wi = -2 ε xi f’(n), where xi is the input 

corresponding to weight wi, and n(net) is the 
weighted sum. This works as is for the multi-layer 
case at the output layer.



Inside one neuron Backward propagation of sensitivity Backward propagation of sensitivity

Step 1Step 1: Initialisation: Initialisation
Set all the weights and threshold levels of the Set all the weights and threshold levels of the 
network to random numbers uniformly network to random numbers uniformly 
distributed inside a small range:distributed inside a small range:

where where FFii is the total number of inputs of neuron is the total number of inputs of neuron ii
in the network.  The weight initialisation is done in the network.  The weight initialisation is done 
on a neuronon a neuron--byby--neuron basis.neuron basis.

The backThe back--propagation training algorithmpropagation training algorithm
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Step 2Step 2: Activation: Activation
Activate the backActivate the back--propagation neural network by propagation neural network by 
applying inputs applying inputs xx11((pp), ), xx22((pp),…, ),…, xxnn((pp) and desired ) and desired 
outputs outputs yydd,1,1((pp), ), yydd,2,2((pp),…, ),…, yydd,,nn((pp).).
((aa)  Calculate the actual outputs of the neurons in )  Calculate the actual outputs of the neurons in 
the hidden layer:the hidden layer:

where where nn is the number of inputs of neuron is the number of inputs of neuron jj in the in the 
hidden layer, and hidden layer, and sigmoidsigmoid is the is the sigmoidsigmoid activation activation 
function.function.
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((bb)  Calculate the actual outputs of the neurons in )  Calculate the actual outputs of the neurons in 
the output layer:the output layer:

where where mm is the number of inputs of neuron is the number of inputs of neuron kk in the in the 
output layer.output layer.
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Step 2Step 2: Activation (continued): Activation (continued)



Step 3Step 3: Weight training: Weight training
Update the weights in the backUpdate the weights in the back--propagation network propagation network 
propagating backward the errors associated with propagating backward the errors associated with 
output neurons.output neurons.
((aa) Calculate the error gradient for the neurons in the ) Calculate the error gradient for the neurons in the 
output layer:output layer:

wherewhere

Calculate the weight corrections:Calculate the weight corrections:

Update the weights at the output neurons:Update the weights at the output neurons:
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((bb)  Calculate the error gradient for the neurons in )  Calculate the error gradient for the neurons in 
the hidden layer:the hidden layer:

Calculate the weight corrections:Calculate the weight corrections:

Update the weights at the hidden neurons:Update the weights at the hidden neurons:
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Step 3Step 3: Weight training (continued): Weight training (continued)
Step 4Step 4: Iteration: Iteration

Increase iteration Increase iteration pp by one, go back to by one, go back to Step 2Step 2 and and 
repeat the process until the selected error criterion repeat the process until the selected error criterion 
is satisfied.is satisfied.

As an example, we may consider the threeAs an example, we may consider the three--layer layer 
backback--propagation network.  Suppose that the propagation network.  Suppose that the 
network is required to perform logical operation network is required to perform logical operation 
ExclusiveExclusive--OROR.  Recall that a single.  Recall that a single--layer layer perceptronperceptron
could not do this operation.  Now we will apply the could not do this operation.  Now we will apply the 
threethree--layer net.layer net.

ThreeThree--layer network for solving the layer network for solving the 
ExclusiveExclusive--OR operationOR operation

y55

x1 31

x2

Input
layer

Output
layer

Hidden layer

42

θ3
w13

w24

w23

w24

w35

w45

θ4

θ5

−1

−1

−1

The effect of the threshold applied to a neuron in the The effect of the threshold applied to a neuron in the 
hidden or output layer is represented by its weight, hidden or output layer is represented by its weight, θθ, , 
connected to a fixed input equal to connected to a fixed input equal to −−1.1.
The initial weights and threshold levels are set The initial weights and threshold levels are set 
randomly as follows:randomly as follows:
ww1313 = 0.5, = 0.5, ww1414 = 0.9, = 0.9, ww2323 = 0.4, = 0.4, ww2424 = 1.0, = 1.0, ww3535 = = −−1.2, 1.2, 
ww4545 = 1.1, = 1.1, θθ33 = 0.8, = 0.8, θθ44 = = −−0.1 and 0.1 and θθ55 = 0.3.= 0.3.

We consider a training set where inputs We consider a training set where inputs xx11 and and xx22 are are 
equal to 1 and desired output equal to 1 and desired output yydd,5,5 is 0.  The actual is 0.  The actual 
outputs of neurons 3 and 4 in the hidden layer are outputs of neurons 3 and 4 in the hidden layer are 
calculated ascalculated as

[ ] 5250.01 /1)( )8.014.015.01(
32321313 =+=θ−+= ⋅−⋅+⋅−ewxwx sigmoidy

[ ] 8808.01 /1)( )1.010.119.01(
42421414 =+=θ−+= ⋅+⋅+⋅−ewxwx sigmoidy

Now the actual output of neuron 5 in the output layer Now the actual output of neuron 5 in the output layer 
is determined as:is determined as:

Thus, the following error is obtained:Thus, the following error is obtained:

[ ] 5097.01 /1)( )3.011.18808.02.15250.0(
54543535 =+=θ−+= ⋅−⋅+⋅−−ewywy sigmoidy

5097.05097.0055, −=−=−= yye d



The next step is weight training.  To update the The next step is weight training.  To update the 
weights and threshold levels in our network, we weights and threshold levels in our network, we 
propagate the error, propagate the error, ee, from the output layer , from the output layer 
backward to the input layer.backward to the input layer.
First, we calculate the error gradient for neuron 5 in First, we calculate the error gradient for neuron 5 in 
the output layer:the output layer:

1274.05097).0( 0.5097)(1 0.5097)1( 555 −=−⋅−⋅=−=  e y yδ

Then we determine the weight corrections assuming Then we determine the weight corrections assuming 
that the learning rate parameter, that the learning rate parameter, αα, is equal to 0.1:, is equal to 0.1:
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Next we calculate the error gradients for neurons 3 Next we calculate the error gradients for neurons 3 
and 4 in the hidden layer:and 4 in the hidden layer:

We then determine the weight corrections:We then determine the weight corrections:
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At last, we update all weights and threshold:At last, we update all weights and threshold:
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The training process is repeated until the sum of The training process is repeated until the sum of 
squared errors is less than 0.001.  squared errors is less than 0.001.  

Learning curve for operation Learning curve for operation ExclusiveExclusive--OROR
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for solving the for solving the ExclusiveExclusive--OROR operationoperation
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((aa) Decision boundary constructed by hidden neuron 3;) Decision boundary constructed by hidden neuron 3;
((bb) Decision boundary constructed by hidden neuron 4;  ) Decision boundary constructed by hidden neuron 4;  
((cc) Decision boundaries constructed by the complete) Decision boundaries constructed by the complete

threethree--layer networklayer network
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Decision boundariesDecision boundaries Accelerated learning in multilayer Accelerated learning in multilayer 
neural networksneural networks

A multilayer network learns much faster when the A multilayer network learns much faster when the 
sigmoidalsigmoidal activation function is represented by a activation function is represented by a 
hyperbolic tangenthyperbolic tangent::

where where aa and and bb are constants.are constants.
Suitable values for Suitable values for aa and and bb are: are: 
aa = 1.716 and = 1.716 and bb = 0.667= 0.667
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We also can accelerate training by including a We also can accelerate training by including a 
momentum termmomentum term in the delta rule:in the delta rule:

where where ββ is a positive number (0 is a positive number (0 ≤≤ ββ << 1) called the 1) called the 
momentum constantmomentum constant.  Typically, the momentum .  Typically, the momentum 
constant is set to 0.95.constant is set to 0.95.

This equation is called the This equation is called the generalised delta rulegeneralised delta rule..

)()()1()( ppypwpw kjjkjk δαβ ⋅⋅+−∆⋅=∆

Learning with momentum for operation Learning with momentum for operation ExclusiveExclusive--OROR

0 20 40 60 80 100 120
10-4

10-2

100

102

Epoch

Su
m

-S
qu

ar
ed

 E
rr

or

Training for 126 Epochs

0 100 140
-1

-0.5

0

0.5

1

1.5

Epoch

Le
ar

ni
ng

 R
at

e

10-3

101

10-1

20 40 60 80 120

Learning with adaptive learning rateLearning with adaptive learning rate
To accelerate the convergence and yet avoid the To accelerate the convergence and yet avoid the 
danger of instability, we can apply two heuristics:danger of instability, we can apply two heuristics:

Heuristic 1Heuristic 1
If the change of the sum of squared errors has the same If the change of the sum of squared errors has the same 
algebraic sign for several consequent epochs, then the algebraic sign for several consequent epochs, then the 
learning rate parameter, learning rate parameter, αα, should be increased., should be increased.

Heuristic 2Heuristic 2
If the algebraic sign of the change of the sum of If the algebraic sign of the change of the sum of 
squared errors alternates for several consequent squared errors alternates for several consequent 
epochs, then the learning rate parameter, epochs, then the learning rate parameter, αα, should be , should be 
decreased.decreased.

Adapting the learning rate requires some changes Adapting the learning rate requires some changes 
in the backin the back--propagation algorithm.  propagation algorithm.  
If the sum of squared errors at the current epoch If the sum of squared errors at the current epoch 
exceeds the previous value by more than a exceeds the previous value by more than a 
predefined ratio (typically 1.04), the learning rate predefined ratio (typically 1.04), the learning rate 
parameter is decreased (typically by multiplying parameter is decreased (typically by multiplying 
by 0.7) and new weights and thresholds are by 0.7) and new weights and thresholds are 
calculated.  calculated.  
If the error is less than the previous one, the If the error is less than the previous one, the 
learning rate is increased (typically by multiplying learning rate is increased (typically by multiplying 
by 1.05).by 1.05).



Learning with adaptive learning rateLearning with adaptive learning rate

0 10 20 30 40 50 60 70 80 90 100
Epoch

Training for 103 Epochs

0 20 40 60 80 100 120
0

0.2

0.4

0.6

0.8

1

Epoch

Le
ar

ni
ng

 R
at

e

10-4

10-2

100

102

Su
m

-S
qu

ar
ed

 E
rr

or

10-3

101

10-1

Learning with momentum and adaptive learning rateLearning with momentum and adaptive learning rate
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BackProp Technique & Tricks
(Some of these apply to General 
Neural Networks)

(Two References: Neural Networks Tricks of the 
Trade, Orr and Muller, eds.

http://www.dontveter.com/bpr/bpr.html)
• Choose examples with maximum information 
content
– Shuffle the training set so that successive 
samples rarely belong to the same class.
– Present input examples that produce a large error 
more frequently than ones that produce a small 
error.

Technique and tricks
• Normalize the inputs
– Better if mean of a particular variable is near 0.

• Then weight changes are less likely to be 
synchronized, since some will be positive, others 
negative.

• Therefore, subtract the actual mean from the 
variable before training.
– Better if the variables are scaled to have similar 
auto-covariances, defined as (sum-of-squares of 
variable)/(number of samples)

• Then the weights will learn at similar rates.
• Exception: When some variables are known in 

advance to be of less significance. 

Technique and tricks
• Decorrelate the inputs
– Better if no two input variables are 
correlated.
– Correlated inputs analogous to having 
linearly dependent variables in a linear system.
– A technique called PCA (Principal 
Components Analysis), aka Karhunen-Loeve
Expansion, can be used to remove linear 
correlations.
– We will look at PCA later; PCA itself can be 
done by a PCA neural network. 

Summary of input normalization



Technique and tricks
• Prefer tansig (hyperbolic tangent) rather than 
logsig for inner layers.
– tansig output is symmetric about origin,
logsig is not.
– tansig will more likely produce outputs close 
to 0 for the next stage of the network
• Some recommend adding a small linear 
constant to the output of tansig to “avoid flat 
spots”
Piecewise quadratic approximation to tanh

Choice of target values
• Choosing target values of +1, -1 for a tansig causes 
the neuron to be driven toward the saturation region.
• To get into this region, the weights are large and 
may become “stuck” because small gradient values 
will not change them sufficiently.
• It may be better to choose the targets offset from 
these saturation values, or to scale the tansig to get the 
same effect, e.g.  f(x) = 1.7159 tanh(2x/3), which has 
a maximum 2nd derivative where the function’s value 
is +/- 1.

Weight initialization
• Assuming that the training set has been 
normalized and the previous sigmoid is used,
• Draw the initial weights from a distribution, 
such as a uniform distribution, with mean 0 and 
standard deviation 1/sqrt(m) where m is the 
fan-in (number of inputs to the node).
• Increases likelihood that the input to the 
sigmoid will have a standard deviation of 1 
(since the latter is the sqrt of the sum of the 
squares of the weights, for normalized input).

Learning rates
• Ideally, each weight should have its own learning 
rate. See the Neural Networks Tricks of the Trade, Orr 
and Muller, eds., for how to choose learning rate 
based on 2nd derivatives.
• As a substitute, each neuron, or each layer could 
have its own learning rate.
• Learning rates should be proportional to the sqrt of 
the number of inputs to the neuron.
• Weights in earlier layers should be larger than 
those in later layers, since the earlier layers tend to 
have a smaller 2nd derivative of the MSE.

Validation Technique (“Cross-
Validation”)
& Early Stopping

• Split the training set into training and validation 
subsets, e.g. 2:1 or 5:1 ratio.
• Train only on the training subset; use the validation 
set for MSE, every so often (e.g. every 5 epochs).
• For early stopping: Stop training as soon as the
validation error goes up.
• Use the weights before the error went up.
• Rational: Even though a lower minimum might 
have been reached, the local minima tend to be fairly 
close in value in practice.

Over-fitting
• It is possible for a network to over-fit the data, 
meaning that it learns small variations in the data 
which might actually be due to noise.
• Another way of saying this is that the network 
does not generalize well; it is too specialized.
• Validation is one technique used to help avoid 
over-fitting.
• Over-fitting can result if the network has too 
many neurons at its disposal. 



Sizing a network
• Given a problem:
– How many layers?
– How many neurons per layer?
– What activation functions?
• Theoretically, any function can be emulated over a 
given range by a network with just one hidden layer 
and one output layer (two layers total), with sufficient 
neurons in that layer.
• Practically, 2-3 layers suffice for large families of 
problems, although more may be used, especially when 
special feature-selection layers are used, as in the zip-
code recognition network.

Neurons
• Choose number of neurons based on the assessed 
complexity within a layer (number of crests and valleys of 
a function, for example).
• Two approaches for experimental determination:

– Start with a large number of neurons and prune.
– Start with a small number of neurons and build up.

• Negligible weights can be eliminated (set to 0).
• If all input weights to a node are 0, the node can be 
eliminated.
• If all weights a node feeds are 0, the node itself can be 
eliminated.
• Vary weights w to see whether ∆J / ∆w is significant; if 
not, prune the weight. 

Doubling
• Start with a small number of neurons in the 
inner layer.
• If at the conclusion of a training cycle, the 
MSE is inadequate, repeat with double the 
number of neurons.

Number of training samples
• Baum-Hausler rule (1989):
Necessary condition:
(number of samples) > W / (1-a)
where W is the number of weights in the 

network and a is the desired accuracy on the 
test set.

• Sufficient condition:
(number of samples) > log(N / (1-a)) * W/(1-a)
where N is the number of neurons.


