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Topic 4:
How to succeed in playing different 

games?
or

Search Strategies

State Space Search:

Breadth-First, Depth-First, & Iterative 
Deepening

Problem Solving using State -Space 
Search

The trial -and -error approach to problem solving
Problems are solved by searching among alternative choices

Try alternatives until you find a solution
Many problems can be represented as a set of states and a set 

of rules of how one state is transformed to another.
• The problem is how to reach a particular goal state, starting 

from an initial state and using the state traversing rules.
Game-Playing, Theorem Proving, Diagnosis, Query 

Optimization, …

Search Classification
• Strategies for finding a goal. No concern of 
the cost associated with it.

- No information of the search space (e.g. depth 
first)

- Some information on the structure of the 
search space such as estimates to the 
distance to the goal (e.g. best first)
• Strategies for finding a minimum cost path to 
the goal (e.g. branch and bound)
• Strategies for finding a goal in presence of 
adversaries such as game playing (e.g. A-B 
pruning)

Example: Tic -Tac-Toe

State Space Graph
Nodes: solution states of the problem
Edges: steps in the problem-solving process

Tic -tac- toe (cont.)

Why define a state space for tic -tac-toe?
– Each path gives every possible game

– Given a board configuration, we can find 
all of our possible next moves, and from 
these, all of our opponents, …, until we end in 
a final state

– We choose the move that maximizes our 
wins and minimizes our losses
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The City of Konigsberg
State Space Search Graphs

Typically have a set of start states (e.g., 
the empty board)

And, a set of goal states:
– Either some property of states (like a winning tic-

tac-toe board)
– Or, a property of the paths

A solution path begins at a start node and 
ends at a goal node

– There may be zero or more solution paths

The 8 -Puzzle

Move the blank up, right, down, or left

Generating States and Search

States are generated by applying operators to 
the existing state

– The “next move” operator for tic-tac-toe
– The up, down, left, right operators

We search states to find problem solutions
– Thus, the search procedure applies the state 

generation operators

Back to Logic…

An inference procedure is an example 
of state – based search

– States: The set of wffs (well formed 
formulas) we know to be true

– Start: The wffs we know before applying 
inference rules

– Goals: The wffs we want to derive
– Edges: Applications of inference rules 

that derive new facts

Search Strategies
• Measuring problem-solving performance:

• does it find a solution at all?
• is it a good solution (one with a low path cost)?
• what is the search cost associated with the time and 
memory required to find a solution?

• The total cost of the search is the sum of the path cost and 
the search cost.

• Search Strategy is evaluated in four criteria:
• completeness
• time complexity
• space complexity
• optimality/admissibility
• Informed search (heuristic search) versus uninformed 
search (blind search)
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Search Strategies
Data -driven search

– Also called forward –chaining
– Begin with the known facts of the problem
– Apply the legal moves to the facts to 

generate new facts
– Repeat until we find a path to a goal state 
– This is what we did in 8 -puzzle and tic-tac-

toe
– It is also how we might try to prove a wff…

Search Strategies (cont.)
Goal -Driven search

– Also called backward –chaining
– Like “trying to solve a maze by working 

backward from the finish to the start” 
– Start with the goal state
– Find the states (subgoals) from which legal 

moves would generate the goal
– Repeat until we get to the known facts of 

the problem
– Prolog performs goal -driven search…

Is Data - or Goal-Driven Search 
Better?

Depends on:
– The structure of the search space
– How well it can be pruned
– Nature of the problem

• Are the goals defined, how many goals, etc.

Is Data - or Goal-Driven Search Better?
Goal-Driven search is recommended if:

• A goal or hypothesis is given in the problem statement or can 
easily be formulated.

• There is a large number of rules that match the facts of the 
problem and thus produce an increasing number of 
conclusions or goals.

• Problem data are not given but must be acquired by the 
problem solver.
Data-Driven search is recommended if:

• All or most of the data are given in the initial problem statement.
• There is a large number of potential goals, but there are only a 

few ways to use the facts and given information of the 
particular problem.
• It is difficult to form a goal or hypothesis.

Search Algorithms: Backtracking

Search begins at the start state
Pursues a path until it finds a goal or a 
dead end
When it finds a dead -end it “backtracks”

Backtracking Example
After Iteration Curr StateList NewSL

DeadEnds 
0                 A           [A]                     [A]       

[ ]
1                 B         [B, A]              [B, E, A]               

[ ]
2                 C         [C,B,A]         [C,D,B,E,A]            

[ ]
3                 D         [D,B,A]           [D,B,E,A]             

[C]
4                 E           [E,A]                [E,A]        

[C,D,B]
5                 F         [F,E,A]             [F,E,A]            

[C,D,B]
6                 F         [F,E,A]
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More on Backtrack

Can be goal -driven by switching goal and 
start

Backtrack keeps track of:
– Unprocessed states ( NewSL )
– Dead End states (to prevent searching useless

paths)
– The solution path (StateList)
– Unexamined states (to prevent cycles)

Breadth -First Search

Consider every node at each level of the 
graph before going deeper into the space

Guaranteed to find the shortest path

Breadth -First Search
• In breadth-first, all the siblings of a node are explored 

before their children are expanded.
1. Form a one-element queue consisting of the root 
node.
2. Until the queue is empty or the goal has been 
reached, determine if the first element in the queue 
is the goal node.
2a. If the first element is not the goal node, remove 
the first element from the queue and add the first 
element's children, if any, to the back of the queue.

Breadth -First Search Algorithm
1 Open = [Start]; Closed = [ ];
2 while Open  [ ] do
3 S = head(Open)
4 remove first element from Open
5 if S = goal
6 return SUCCESS
7 else
8 generate children of S
9 prepend S to Closed
10 discard children of S if already on Open or Closed
11 append remaining children on Open
12 end while
13 return FAIL

Breadth -First Search Example Breadth -First Search Example
After Iteration Open Closed

0                                      [A]   [ ]
1                                     [B,E]                     [A]
2                                    [E,C,D]                    [B,A]
3                                    [C,D,F]                    [E,B,A]
4                                     [D,F]                     [C,E,B,A]
5                                       [F]                     [D,E,B,A]
6                                        [ ]

We are done!

Note: We don’t have the 
path!

We can track paths by 
storing 
paths (via parents) in 
closed…
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Exercise: Breadth -First Search

In groups, walk through the breadth -first algorithm 
on this 
tree:

Would a goal -directed breadth -first search work 
better here?

Depth -First Search: Simplified Backtrack
1 Open = [Start]; Closed = [ ];
2 while Open ≠ [ ] do
3 S = head(Open) 
4 remove first element from Open
5 if S = goal
6 return SUCCESS
7 else
8 generate children of S
9 prepend S to Closed
10 discard children of S if already on Open or Closed
11 prepend remaining children of S on Open
12 end while
13 return FAIL

Depth -First Search Example
After Iteration Open Closed 

0                             [A]                          [ ]
1                           [B,E]                   [A]
2                         [C,D,E]                 [B,A]
3                           [D,E]                  [C,B,A]
4                             [E]                 [D,C,B,A]
5                             [F]              [E,D,C,B,A]
6                              [ ] We are done!

Note: Could store path too…

Exercise: Depth -First Search
In groups, walk through the depth-first 

algorithm on this tree:

Would a goal -directed breadth -first search 
work better here?
Is Breadth-First Search better here? 

Depth -First vs. Breadth -First Search
They Both:
– Find a solution if one exists (and if the state isn’t 

too big…)
Depth-First

– Not guaranteed to find shortest path
– Can be get stuck on an infinite paths

Breadth –First
– Takes up more memory…
– … Must remember the unexpanded nodes at a 
level, which could become very large as you go 
deeper into the tree/graph
– Depth -First remembers just the path

Iterative Deepening

Place a Depth-Bound on Depth-First Search:

– Start with a breadth -first search, but examine 
children using depth-first search down to a fixed level

– Good for large spaces (like in chess) where you 
can’t exhaustively search
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Brute- force search
• A brute force method: all paths are explored, and from the 

ones leading to a goal, the optimum (minimal cost) is 
chosen

• No information about the search space is assumed
• This strategy is effective for small (narrow and shallow) 

search spaces
• A regular tree with a branching factor of B and depth L:
- number of nodes to explored:
- number of paths to explored:
- example: B=5 and L=10:
• Brute-force search techniques (i.e., pure depth-first & pure 

breadth-first) may fail to find a solution within any practical 
length of time

Heuristics
• An informed guess of the next step to be taken in solving a 

problem would prune the search space
• A heuristic is any rule or method that provides guidance in 

decision making
• A problem may not have an exact solution because of the 

inherent ambiguities in the problem statement or available 
data

• Heuristics are viewed as ‘rules of thumb’ that domain 
experts could use to generate good solutions without 
exhaustive search (rule-based expert systems).

• Heuristic is the opposite of algorithmic
• A heuristic may find a sub-optimal solution or fail to find a 

solution since it uses limited information
• In search algorithms, heuristic refers to a function that 

provides an estimate of solution cost

A heuristic for Tic-Tac-Toe State space search using heuristic 

Hill climbing search
• Uses local estimates of the distance to the goal and expands the node 

with the smallest estimate
• Retains no memory: queue length of 1
• If a node has no children, then the search terminates
• The goal is deemed to have been reached if the cost of all the children 

is larger than the cost of the parent
• To conduct a hill climbing search (similar to depth-search!):
1. Form a one-element queue consisting of the root node.
2. Until the queue is empty or the goal has been reached, determine if 

the first element of the queue is the goal node.
2a. If the first element of the queue is not the goal node, remove the first 

element from the queue, sort the first element’s children, if any, by
estimated remaining distance (cost), and add the first element’s lowest-

cost child, if any, to the queue.

Hill climbing discussion
• Suitable for problems with adjustable parameters and a 

quality measurement associated with these parameters
• Instead of an explicit goal, the procedure stops when a 

node is reached where all the node’s children have lower 
quality measurements

• Hill climbing performs well if the distance estimate (quality 
measurement) is locally consistent. That is, the node with 
the shortest distance estimate will eventually lead to the 
goal

• Hill climbing may encounter problems:
- stuck at local optimum
- ignore global optimum
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Best first search
• Similar to hill climbing, it uses a cost function to estimate 

the distance from the goal
• But it remembers the unexplored nodes
• The children of the currently explored node and previously 

unexplored nodes are sorted
• To conduct a best-first search (similar to hill climbing):
1. Form a one-element queue consisting of the root node.
2. Until the queue is empty or the goal has been reached, 

determine if the first element of the queue is the goal 
node.

2a. If the first element of the queue is not the goal node, 
remove the first element from the queue, add the first 
element’s children, if any, to the queue, and sort the entire 
queue by estimated remaining distance (cost).

Beam search
• Similar to breadth-first, it explores the search tree level by level
• But it keeps only the best w nodes from each level
• To conduct a beam search:
1. Form a one-element queue consisting of the root node.
2. Until the queue is empty or the goal has been reached, determine if 

the first element in the queue is the goal node.
2a. If the first element is not the goal node, remove the first element 
from the queue, find the first element's children, if any.
2b. Sort all the children found so far, by estimated remaining distance.
Add the best w children to the back of the queue.

• Beam search is very efficient since it explores only w nodes at each 
level. However, it may fail due to local minima

Branch and bound
• Branch and bound uses the costs of the already formed partial paths to 

guide the search
• Expand the partial path with the minimum cost
• Even if the goal is found, keep expanding until all the partial paths have 

costs which are greater than or equal to the minimal cost of the
solution path found so far

• To conduct a branch and bound search:
1. Form a queue of partial paths. Let the initial queue consist of the 
zero-length,zero-step path from the root node to nowhere.
2. Until the queue is empty or the goal has been reached, determine if 
the first path in the queue is the goal node.

2a. If the first path does not reach the goal node:
2a1. Remove the first path from the queue.
2a2. Form new paths from the removed path by 
extending one step.
2a3. Add the new paths to the queue.

2a4. Sort the queue by increasing cost accumulated so far.

Branch and bound: example

Branch and bound with dynamic programming
• To conduct a branch and bound search with dynamic programming:
1. Form a queue of partial paths. Let the initial queue consist of the zero-

length,zero-step path from the root node to nowhere.
2. Until the queue is empty or the goal has been reached, determine if 

the first path in the queue reaches the goal node.
2a. If the first path does not reach the goal node:
2a1. Remove the first path from the queue.
2a2. Form new paths from the removed path by extending one step.
2a3. Add the new paths to the queue.
2a4. Sort the queue by increasing cost accumulated so far.
2a5. If two or more paths reach a common node, delete all those
paths except the one that reaches the common node with the
minimum cost.

Branch and bound with underestimates
• Pure branch and bound uses information of the search that 

has been obtained so far
• One may also use information about the cost of the 

remaining steps to the goal
• If at any node, the cost of the path from this node to the 

goal is estimated,then the total cost of a path from the 
start through the current node to the goal can be 
estimated

• The estimated cost of the solution path = the cost of the 
path from the start to the present node + the estimated 
cost of the remaining path to the goal

• Select the path with the smallest such estimate to expand 
next

• The estimated total cost is f(n) = g(n) + h(n)
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Branch and bound with underestimates: Procedure
• To conduct a branch and bound search with dynamic programming:

1. Form a queue of partial paths. Let the initial queue consist of the 
zero-length, zero-step path from the root node to nowhere.
2. Until the queue is empty or the goal has been reached, determine if 
the first path in the queue reaches the goal node.
– 2a. If the first path does not reach the goal node:
– 2a1. Remove the first path from the queue.
– 2a2. Form new paths from the removed path by extending one 

step.
– 2a3. Add the new paths to the queue.
– 2a4. Sort the queue by the sum of cost accumulated so far and a 

lower-bound estimate of the cost remaining, with least-cost paths 
in front.

Avoiding fruitless paths
Good heuristics can turn bad
– They are just guesses
– How do we avoid a deep fruitless path?
Use a compound heuristic

Factor in history
F(n) = g(n) + h(n)

g(n) – current depth
h (n) – original heuristic

Called Algorithm A

The A* search
• The A* is a branch and bound search with dynamic programming 
and an underestimate of the remaining cost to the goal
• To conduct an A* search:

1. Form a queue of partial paths. Let the initial queue consist of the
zerolength,zero-step path from the root node to nowhere.

2. Until the queue is empty or the goal has been reached, determine if 
the first path in the queue reaches the goal node.
2a. If the first path does not reach the goal node:
2a1. Remove the first path from the queue.
2a2. Form new paths from the removed path by extending one step.
2a3. Add the new paths to the queue.
2a4. Sort the queue by the sum of cost accumulated so far and a
lower-bound estimate of the cost remaining, with least-cost paths
in front.
2a5. If two or more paths reach a common node, delete all those
paths except the one that reaches the common node with the
minimum cost.

The A* search: discussion
• At any one time, the queue may contain states at different levels of 
the state space graph, allowing full flexibility in changing focus of the 
search
• Since f(n) = g(n) + h(n), the h(n) value guides search toward 
heuristically promising states while the g(n) value prevents search 
from persisting indefinitely on a fruitless search
• The function h(n) relies upon some heuristic information available 
from the problem domain. It changes from heuristic to heuristic, and 
from problem to problem
• The design of good heuristics is a difficult, empirical problem
• h(n) in general weights how close node n is to the goal
• In the 8-puzzle problem, if the cost of the path is the total number of 
tile movements necessary to transform a starting configuration to a 
required one, then the number of misplaced tiles between node n and 
the goal can be used as the heuristic.

The evaluation function
• In searching for the optimal path, one uses the 
evaluation function f(n), which defines the cost of a path 
from the start node, through node n, to the goal node
• Denote k(ni,nj) as the actual cost of a minimal cost path 
between two arbitrary nodes ni and nj
• Define an evaluation function f*(n) = g*(n) + h*(n):

- g*(n) is the actual cost of the shortest path from the start 
node to node n,i.e., g*(n) = k(S,n)

- h*(n) is the actual cost of the shortest path from n to the 
goal,i.e., if G is a set of goals, then h*(n) = minimum k(n,
nj) for all nj ∈ G

- therefore f*(n) is the actual cost of the optimal path from a 
start node to a goal node that passes through node n

The evaluation function
• Since estimates are used, the actual value of the evaluation 
function, i.e., f*(n), is not known until the goal has been reached or the 
graph has been completely searched
• f(n) = g(n) + h(n) is therefore a close approximation of f*(n):
- g(n) is the cost of the minimum-cost path leading to node n 
uncovered so far, and it is a reasonable estimate of g*(n)
- note that g(n) >= g*(n)
- h*(n) may not be computed but it is possible to determine the 
heuristic estimate h(n) is bounded,
• h(n) is called an admissible heuristic if it is bounded by h*(n)
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Admissibility and informedness
Theorem:
The A* is admissible if an admissible heuristic is used.

(That is, A* always find a minimal cost path to a solution 
whenever such a path exists.)
Definition

For two A* heuristics h1 and h2, if h1(n)< h2(n) for all states 
n in the search space, heuristic h2 is said to be more 
informed than h1, or h2 dominates h1.
Application:
A more informed strategy (i.e., one that has a heuristic 
value which is closer to the actual remaining cost) would 
expand fewer nodes. It is always better to use a heuristic 
function with higher values, as long as it does not 
overestimate.

Complexity issues
• The more informed a heuristic, the less space the A* needs to expand 

to get the optimal solution.
• The computational complexity of an A* search strategy depends on two
parameters:
- The computational complexity of evaluating the heuristic h(n).
- The number of nodes which were expanded by A*.
• The more informed a strategy is (i.e., the closer h(n) is to h*(n)) the less 

nodes the search expands. On the other hand, estimating accurately 
(i.e., h(n) close to h*(n)) may prove computationally expensive.

• One must be careful that the computations necessary to employ the 
more informed heuristic are not so inefficient as to offset the gains 
from reducing the number of states searched.

• In certain instances, one may use a heuristic that is not strictly an
underestimate. By doing so, one does not guarantee the admissibility of 

the search, but the search may terminate quickly with or near optimal 
path.

Complexity plot


