

 1

1

Genetic Programming

2

Genetic Programming
 What is it?

 Genetic programming (GP) is an
automated method for creating a working
computer program from a high-level
problem statement of a problem.

 Genetic programming starts from a high-
level statement of “what needs to be done”
and automatically creates a computer
program to solve the problem.

3

Genetic Programming

 John Koza, 1992
 “Genetic Programming: On the

Programming of Computers by Means of
Natural Selection“

 www.genetic-programming.com

4

Genetic Programming

5

Genetic Programming

 In genetic programming:
 Problem -- involves not finding a solution,

but instead creating a program that can
find the best solution.

 Phenotype (solution) is a computer
program

 Search space is the set of all possible
computer programs.

6

Genetic Programming

 In Koza’s original work
 LISP was used as the programming

language
 Parse trees were used as the genotype.

 Straight-forward genetic mapping
 Functional program --> parse tree.

 2

7

LISP and parse trees
(defun o()
 (setf A 1.52)
 (sqtr (* A (* A A))))

Mitchell

sqrt

*

*A

AA

8

Genetic Programming

 GPs fit well within the EA framework

 Important distinction:
 Genotype = tree
 Phenotype = LISP program

9

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype
 Identify your phenotype
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

10

Defining your problem
 For programs to be be evolved, must define:

 Terminal Set
 Leaves of the parse tree
 Correspond to program inputs

 Function Set
 Interior nodes of parse tree
 Set of functions allowable in program
 Should be chosen with relation to problem to be solved.
 Can have side effects.

11

Defining your problem
 Sufficiency and Closure

 Sufficiency
 terminals + functions must be able to solve the

problem at hand
 Choose your terminal and function set wisely

 Closure
 Functions should be able to accept as

argument any value returned by other
functions

 Universal return type.

12

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

 3

13

GPs: Crossover and Mutation
 Crossover

 Choose random sub-tree from each parent
 Swap them in resultant children

 Mutation
 Replace randomly chosen sub-tree with randomly

generated tree.

 Can result in increasing / decreasing the size
of the genome.

14

GPs: Crossover and Mutation

Before crossover

After crossover

crossover mutation

Before mutation

After mutation

 Note that operation maintain valid
individuals.

15

GPs and crossover

16

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

17

Fitness

 Evaluate the effectiveness of the
program to solve the problem

 Two stage fitness:
 Run resultant program
 Compare to correct / desired results

18

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

 4

19

GPs as EAs

 In Koza’s original work:
 10% of individuals will move to next

generation
 Probability based on Fitness

 90% formed by crossover
 Parent chosen probabilistically based on fitness

 Koza does not use mutation.

20

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

21

Initializing population

 Randomly creating programs.
 Must assure that trees match valid

programs.
 Number of function arguments must match.

 Usually a limit is set on tree depth of
generated program.

 Questions so far

22

Trivial example

 From Mitchell
 Program to compute P, the orbital period

of a planet.
 Parameters A = average distance from the sun.

 Known solution:
 P2 = cA3

 c = constant.

23

Trivial example

24

Trivial example

 Terminal set:
 A = average distance from the sun

 Function set:
 Typical arithmetic operations:

 +, -, *, /, sqrt

 Closure -- Note that all take float and
return float

 5

25

Trivial example

 Sample solutions

26

Trivial example

 Fitness:

27

More interesting Example
 Block stacking problem

 Koza 1992 as described by Mitchell
 Given:

 Set of blocks that can either be
 On a stack
 On a table.

 Goal:
 Find a program that will place the blocks on the stack in

the “correct” order.

28

Other GP variants

 Strongly typed GP
 Gets around the closure idea
 Function arguments are typed
 Individual generation and genetic

operators must respect the types.

29

Building Block Example

 More elaborate scheme to solve this:
 Using Strongly Typed GPs
 Found in [Kochenderfer]

 Questions?

30

Factoids about Genetic Programming

 From Koza’s Web site
 There are now 36 instances where genetic

programming has produced a human-competitive
result.

 15 instances where GP has created an entity that either
infringes or duplicates the functionality of a previous
patent

 6 instances where genetic programming has done the
same with respect to a 21st-centry invention

 2 instances where genetic programming has created a
patentable new invention.

 6

31

Factoids about Genetic Programming

 GPs themselves were patented by Koza:
 Koza, John R. Non-Linear Genetic Algorithms for

Solving Problems.
 US Patent 4,935,877. Issued June 19, 1990.
 Australian Patent 611,350. Issued September 21, 1991.
 Canadian Patent 1,311,561. Issued December 15, 1992.
 German patent 3916328.8-53. Issued June 18, 1997.

32

Genetic Programming
 In Koza’s original work

 LISP was used as the programming language
 Parse trees were used as the genotype.

 Straight-forward genetic mapping
 Functional program --> parse tree.

 Not the only way to do genetic programming.

33

Genetic Programming
 In genetic programming:

 Problem -- involves not finding a solution,
but instead creating a program that can
find the best solution.

 Phenotype (solution) is a computer
program

 Search space is the set of all possible
computer programs.

 Genotype need not be a parse tree!

34

GPs as GAs

 GADS
 [Paterson, Livesey]

 Phenotype = program
 Genotype = n-tuple (array).

35

Languages as grammars

 Grammars for programming languages
 <stmt> → … | <for-stmt> | <if-stmt> | …
 <stmt> → { <stmt> <stmt> } | ε
 <if-stmt> → if (<expr>) then <stmt>
 <for-stmt> → for (<expr>; <expr>;

<expr>) <stmt>

36

Phenotype Representation
 Phenotype is a program in a given language

 Language is defined by a grammar in BNF.
 Each production in the grammar is uniquely

numbered.

lhs → rhs
<sexpr> → (GT <sexpr> <sexpr>)

 7

37

Phenotype Representation

38

Genotype representation
 A valid program can be described by a

sequence of applications of grammar rules.
 Genotype = tuple or array representing this

sequence.
 Let’s try:

 (GT (* -1 X) (* V (ABS V)))

 Can use “standard” GA operators for tuples
for crossover and mutation.

39

Genetic Mapping
 Genetic Repairs Required:

 Inapplicable productions.
 Assume after a number of production

applications (as defined by a genome) the
generated program is:

(GT <sexpr> <numeral>)

What if the the production of the next gene does
NOT have a lhs of <sexpr> or <numeral>?

40

Genetic Mapping

 Genetic Repairs Required:
 Inapplicable productions.

 Genetic repair: skip the problematic gene and
progress to the first gene that has an
appropriate lhs.

41

Genetic Mapping
 Genetic Repairs Required:

 Residual non-terminals
 What if…after all productions associated to all

genes have been applied and there are still
non-terminals in the program?

42

Genetic Mapping
 Genetic Repairs Required:

 Residual non-terminals
 Reject this individual or
 Have each non-terminal have a default terminal

value and use this default.

 8

43

Fixed length vs variable length
Genotype
 Can use either…

 For fixed length, stop after all non-
terminals have been exhaused and
replaced.

 Paper used fixed length chromosomes
of length 50 and 200.

44

Findings

 Certainly a viable approach
 Very grammar specific

 Even different grammars for same
language.

 No need to use LISP.
 Better than traditional GPs?

 Jury is still out.

45

Paterson Paper
 Take home messages:

 Distinction between genotype and phenotype
 GPs don’t have to use parse trees as phenotype.
 GPs need not only use LISP.
 Creative genetic mapping and repair

 Questions?

