

 1

1

Genetic Programming

2

Genetic Programming
 What is it?

 Genetic programming (GP) is an
automated method for creating a working
computer program from a high-level
problem statement of a problem.

 Genetic programming starts from a high-
level statement of “what needs to be done”
and automatically creates a computer
program to solve the problem.

3

Genetic Programming

 John Koza, 1992
 “Genetic Programming: On the

Programming of Computers by Means of
Natural Selection“

 www.genetic-programming.com

4

Genetic Programming

5

Genetic Programming

 In genetic programming:
 Problem -- involves not finding a solution,

but instead creating a program that can
find the best solution.

 Phenotype (solution) is a computer
program

 Search space is the set of all possible
computer programs.

6

Genetic Programming

 In Koza’s original work
 LISP was used as the programming

language
 Parse trees were used as the genotype.

 Straight-forward genetic mapping
 Functional program --> parse tree.

 2

7

LISP and parse trees
(defun o()
 (setf A 1.52)
 (sqtr (* A (* A A))))

Mitchell

sqrt

*

*A

AA

8

Genetic Programming

 GPs fit well within the EA framework

 Important distinction:
 Genotype = tree
 Phenotype = LISP program

9

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype
 Identify your phenotype
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

10

Defining your problem
 For programs to be be evolved, must define:

 Terminal Set
 Leaves of the parse tree
 Correspond to program inputs

 Function Set
 Interior nodes of parse tree
 Set of functions allowable in program
 Should be chosen with relation to problem to be solved.
 Can have side effects.

11

Defining your problem
 Sufficiency and Closure

 Sufficiency
 terminals + functions must be able to solve the

problem at hand
 Choose your terminal and function set wisely

 Closure
 Functions should be able to accept as

argument any value returned by other
functions

 Universal return type.

12

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

 3

13

GPs: Crossover and Mutation
 Crossover

 Choose random sub-tree from each parent
 Swap them in resultant children

 Mutation
 Replace randomly chosen sub-tree with randomly

generated tree.

 Can result in increasing / decreasing the size
of the genome.

14

GPs: Crossover and Mutation

Before crossover

After crossover

crossover mutation

Before mutation

After mutation

 Note that operation maintain valid
individuals.

15

GPs and crossover

16

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

17

Fitness

 Evaluate the effectiveness of the
program to solve the problem

 Two stage fitness:
 Run resultant program
 Compare to correct / desired results

18

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

 4

19

GPs as EAs

 In Koza’s original work:
 10% of individuals will move to next

generation
 Probability based on Fitness

 90% formed by crossover
 Parent chosen probabilistically based on fitness

 Koza does not use mutation.

20

GPs as EAs
 To use evolutionary algorithms you must:

 Define your problem -- must provide hints to functional
building blocks

 Define your genotype -- parse trees
 Identify your phenotype -- LISP program
 Define the genotype -> phenotype translation
 Define crossover and mutation operators
 Define fitness
 Determine selection criteria
 Set population parameters

21

Initializing population

 Randomly creating programs.
 Must assure that trees match valid

programs.
 Number of function arguments must match.

 Usually a limit is set on tree depth of
generated program.

 Questions so far

22

Trivial example

 From Mitchell
 Program to compute P, the orbital period

of a planet.
 Parameters A = average distance from the sun.

 Known solution:
 P2 = cA3

 c = constant.

23

Trivial example

24

Trivial example

 Terminal set:
 A = average distance from the sun

 Function set:
 Typical arithmetic operations:

 +, -, *, /, sqrt

 Closure -- Note that all take float and
return float

 5

25

Trivial example

 Sample solutions

26

Trivial example

 Fitness:

27

More interesting Example
 Block stacking problem

 Koza 1992 as described by Mitchell
 Given:

 Set of blocks that can either be
 On a stack
 On a table.

 Goal:
 Find a program that will place the blocks on the stack in

the “correct” order.

28

Other GP variants

 Strongly typed GP
 Gets around the closure idea
 Function arguments are typed
 Individual generation and genetic

operators must respect the types.

29

Building Block Example

 More elaborate scheme to solve this:
 Using Strongly Typed GPs
 Found in [Kochenderfer]

 Questions?

30

Factoids about Genetic Programming

 From Koza’s Web site
 There are now 36 instances where genetic

programming has produced a human-competitive
result.

 15 instances where GP has created an entity that either
infringes or duplicates the functionality of a previous
patent

 6 instances where genetic programming has done the
same with respect to a 21st-centry invention

 2 instances where genetic programming has created a
patentable new invention.

 6

31

Factoids about Genetic Programming

 GPs themselves were patented by Koza:
 Koza, John R. Non-Linear Genetic Algorithms for

Solving Problems.
 US Patent 4,935,877. Issued June 19, 1990.
 Australian Patent 611,350. Issued September 21, 1991.
 Canadian Patent 1,311,561. Issued December 15, 1992.
 German patent 3916328.8-53. Issued June 18, 1997.

32

Genetic Programming
 In Koza’s original work

 LISP was used as the programming language
 Parse trees were used as the genotype.

 Straight-forward genetic mapping
 Functional program --> parse tree.

 Not the only way to do genetic programming.

33

Genetic Programming
 In genetic programming:

 Problem -- involves not finding a solution,
but instead creating a program that can
find the best solution.

 Phenotype (solution) is a computer
program

 Search space is the set of all possible
computer programs.

 Genotype need not be a parse tree!

34

GPs as GAs

 GADS
 [Paterson, Livesey]

 Phenotype = program
 Genotype = n-tuple (array).

35

Languages as grammars

 Grammars for programming languages
 <stmt> → … | <for-stmt> | <if-stmt> | …
 <stmt> → { <stmt> <stmt> } | ε
 <if-stmt> → if (<expr>) then <stmt>
 <for-stmt> → for (<expr>; <expr>;

<expr>) <stmt>

36

Phenotype Representation
 Phenotype is a program in a given language

 Language is defined by a grammar in BNF.
 Each production in the grammar is uniquely

numbered.

lhs → rhs
<sexpr> → (GT <sexpr> <sexpr>)

 7

37

Phenotype Representation

38

Genotype representation
 A valid program can be described by a

sequence of applications of grammar rules.
 Genotype = tuple or array representing this

sequence.
 Let’s try:

 (GT (* -1 X) (* V (ABS V)))

 Can use “standard” GA operators for tuples
for crossover and mutation.

39

Genetic Mapping
 Genetic Repairs Required:

 Inapplicable productions.
 Assume after a number of production

applications (as defined by a genome) the
generated program is:

(GT <sexpr> <numeral>)

What if the the production of the next gene does
NOT have a lhs of <sexpr> or <numeral>?

40

Genetic Mapping

 Genetic Repairs Required:
 Inapplicable productions.

 Genetic repair: skip the problematic gene and
progress to the first gene that has an
appropriate lhs.

41

Genetic Mapping
 Genetic Repairs Required:

 Residual non-terminals
 What if…after all productions associated to all

genes have been applied and there are still
non-terminals in the program?

42

Genetic Mapping
 Genetic Repairs Required:

 Residual non-terminals
 Reject this individual or
 Have each non-terminal have a default terminal

value and use this default.

 8

43

Fixed length vs variable length
Genotype
 Can use either…

 For fixed length, stop after all non-
terminals have been exhaused and
replaced.

 Paper used fixed length chromosomes
of length 50 and 200.

44

Findings

 Certainly a viable approach
 Very grammar specific

 Even different grammars for same
language.

 No need to use LISP.
 Better than traditional GPs?

 Jury is still out.

45

Paterson Paper
 Take home messages:

 Distinction between genotype and phenotype
 GPs don’t have to use parse trees as phenotype.
 GPs need not only use LISP.
 Creative genetic mapping and repair

 Questions?

