
1

C++ Variables

Variables in C++

• The variable
• Kinds of Variables
• Memory storage
• Variable qualifiers

The variable

• A variable declaration is a request for space
in memory
– Memory associated with a variable with size

based on the kind of the variable.
– Variable declarations are “executable”

statements
• Memory is allocated when declaration is made

The variable

• Basic data types
– int, short, long, unsigned
– bool

– char

– float

– double

The variable

Variable declarations:

int foo;
float f = 7.0;
char c = ‘d’;

The variable

• Data type sizes (using CC on Sun)
– sizeof (char) = 1
– sizeof (bool) = 1
– sizeof (short) = 2
– sizeof (int) = 4
– sizeof (unsigned) = 4
– sizeof (float) = 4
– sizeof (double) = 8
– sizeof (long double) = 16

2

Kinds of variables

• Basic variable
• Pointer variable
• Reference variable

Variables in C++

• Basic variable
– Memory associated with a variable with size based on

the data type of the variable

int foo;

double f = 7.0;
double ff = f;

foo f

ff

Variables in C++

• Pointer Variables
– Stores the memory address of an object.
– Can have pointers to basic data types.
– C++ has no garbage collection!
– NULL pointer takes value 0.

Variables in C++

Pointer variable
int *foo;

float *f = 7.0; // Invalid

float *g = 0; // okay

float *h = 0x12345; // illegal!!

The variable

• Data type sizes (using CC on Sun)
– sizeof (char *) = 4
– sizeof (bool*) = 4
– sizeof (short*) = 4
– sizeof (int*) = 4
– sizeof (unsigned*) = 4
– sizeof (float*) = 4
– sizeof (double* = 4
– sizeof (long double*) = 4

Variables in C++

Pointer variable
int *foo;

double *f;

foo 0x345ABC2 0x345ABC2

f 0x675ABC2 0x675ABC2

3

Variables in C++

• Address of operator
– You can always get the address of any variable

or object by using the address of operator &.
• float f = 7.0;
• float *fptr = &f;

Variables in C++

• Pointer Variables
– Dereference operator *
– If ptr is a pointer

• i.e A variable whose contents is a memory address
– then *ptr refers to the object or data item that

is pointed to by ptr
• Can be interpreted as:

– The data item or object at ptr
– The object or data item pointed to by ptr

Variables in C++
Pointer variable

• double f = 7.0;
• double *fptr = &f;
• double fv = (*fptr);

fptr 0x675ABC2 0x675ABC2

f 7

fv 7

Functions

• In C++ function arguments are pass by value:

int i = 7;

foo (i);

cout << i;

void foo (int j)

{

cout << “Arg is “ << j << endl;

j = 12;

}

void – indicates that a function does not return a value

Functions

int i = 7;

int *ia = &i

foo (ia);

cout << i;

void foo2 (int *j)

{

cout << “Arg is “ << *j << endl;

*j = 12;

}

i 7 0x675ABC2

ia 0x675ABC2

0x675ABC2 j12

Memory Storage Architecture

• Typically, a C++ program maintains 4
memory areas:

Stack

Static

Heap

Code

For global variables

For function calls

Free store

Executable code

4

Heap storage

• To allocate a variable on the heap, use new
– new returns a pointer to the newly

allocated space for the variable.
float *f = new float;

(*f) = 7.0;

– All variables allocated on the heap using
new must be deallocated using delete.

f 0x675ABC2 0x675ABC2

7

Variables in C++

• Reference Variables
– Alias for an already existing object
– Usually used to pass function arguments by

reference.
– Syntactically, references are treated like basic

variables, yet they do contain memory
addresses.

Variables in C++

• Reference variable
double f = 7;

double &fref = f;

cout << “The value is “ << fref <<

“ and not “ << (*fref);

fref 0x675ABC2 0x675ABC2

f 7

Variables in C++

int &foo; // Invalid

int i;

int &iref = i; // okay

int &ref7 = 7; // Invalid

int &badref = &i; // invalid

Functions

int i = 7;

foo (i);

cout << i;

void foo2 (int &j)

{

cout << “Arg is “ << j << endl;

j = 12;

}

i 7 0x675ABC2 0x675ABC2 j12

Variables in C++

• Questions?

5

Variable qualifiers

• const
– A variable that cannot be modified.

(oxymoron?)
– When used with pointers – cannot modify the

data the variable is pointing to.

Variable qualifiers

const int i = 7; // okay

i = 12; // not okay

Const pointers and functions

int i = 7;

int *ia = &i

foo (ia);

cout << i;

void foo2 (const int *j)

{

cout << “Arg is “ << *j << endl;

*j = 12; // Invalid!

}

Const pointers and functions

int i = 7;

const int *ia = &i

foo (ia);

cout << i;

void foo2 (int *j)

{

cout << “Arg is “ << *j << endl;

*j = 12;

}

invalid

Global variables

• All variables defined outside a function are global:
– Global variables are stored in static memory.
– Global variables are accessible by all (except when

declared as static)

int globI = 7;

main () { … }

Extern

• Used to refer to global variables defined
elsewhere.

int globI = 7;

main ()
{

globI = 12;
…

}

extern int globI;

int foo (int i)
{

globI = i;
…

}

File 1 File 2

6

Static

• Static variables are also stored in static
memory

• static limits the scope of a variable to a
file or function.

• Classes can also have static members
– But more on that when we get to classes.

Static

static int globI = 7;

main ()
{

globI = 12;
…

}

Static

int foo (int i)
{

static int globI = i;
…

}

Compiler hints

• volatile
– Indicates that the variable can be changed in

unseen ways
• E.g. Changed by another thread
• Hint to compiler not to optimize away

• register
– Hint to compiler to place variable in computer

register
– Cannot take address of a register variable

Summary

• Variables are a request for memory to store data
• Variable types

– Basic / Pointer / Reference
• Memory Organization

– Static / Stack / heap / Code
• Variable Qualifiers

– const / static / extern / register / volatile

• Questions?

Next time

• Aggregate data structures
– Arrays
– union
– struct

• Have a good weekend.

