
1

C++: Inheritance

Questions from last time

• long long?
– long is a size specifier

• There is no long long.
• There is however a long int
• There is however a long double

Questions from last time

• new
– new[-5] will throw a bad_alloc exception

• May also return a null pointer
– What about new[]

• You can override the new operator
• new[] is the operator that gets called when allocating

memory for an array of objects.
– MyClass fred[] = new MyClass[20];

Project

• Design due April 4th

• Shapewin
– Distribution can be found in

• Source, include, libs
– ~cs4/pub/util/src/Shapewin
– ~cs4/pub/util/include/Shapewin
– ~cs4/pub/util/lib/libShapewin.a

• Docs
– http://www.cs.rit.edu/~cs4/pub/doc/shapewin

– Shapewin overview tomorrow in lecture
• Questions?

Questions

• Any other questions before we start?

Plan for the week

• Today: Inheritance I (Basics)
• Tomorrow: Inheritance II (Behind the

scenes)
• Thursday: Templates and the STL

2

Subclassing

• Defining a class as a specialization or
extension of another class.

• The more general class is called the
superclass.

• The more specific class is called the
subclass.

• Implies an IS-A relationship.

Subclassing
• Define a more general class “Performer”.
• Both Actors and Musicians are specializations of

Performer

Performer

Actor Musician

isA isA

superclass

subclasses

Class Heirarchies

• Class heirarchies can be as deep as needed:

Performer

Actor Musician

isA isA

Guitarist Pianist Drummer

Subclassing and Inheritance

• When you define a class as a subclass:
– The subclass inherits all of the data members

and methods of the superclass.
– In addition, a subclass can have data/methods

that are it’s own.
– Inheritance is transitive:

• I.e. If B is a subclass of A and C is a subclass of B,
then C inherits the data/methods from both B and A.

Polymorphism (in Java)

• A variable of a superclass can reference an
object of any one of it’s subclasses.

• The variable remembers what subclass of
object is referenced so that the correct
methods of the subclass are called.

Polymorphism in Action (Java)

• Example
Performer A = new Actor(“foo”);
Performer M = new Musician (“bar”);
Performer P = new Performer (“fred”);

// calls Actor’s calculatePay
float Apay = A.calculatePay();

// calls Musician’s calculatePay
float Mpay = M.calculatePay();

// calls Performer’s calculatePay
Float Ppay = P.calculatePay();

3

How this is done in C++

• First, C++ terminology
– Superclass is called the base class
– Subclass is called the derived class.

How this is done in C++

• Syntax
class Performer
{
…
}
class Musician : public Performer
{
…
}

How this is done in C++

• Access specifier
– public – Public members can be used by all
– Private – Members can be used only by base class.
– Protected – Public and protected members seen only be

base and dervived class.

• For all work done in CS4, the access will be
specified as public

C++ and Polymorphism

• Funny thing about C++ Inheritance
– You can only gain polymorphic behavior on pointers

(or references) to objects an not on objects themselves.

Actor A;
Performer P(A) // allowed but loose Actor

// specific behaviour --
slicing

Performer *PP = new Actor (); // okay

P.calculatePay(); // Performer’s calculatePay called
PP->calculatePay(); // Actor’s calculatePay called.

Virtual functions

• In Java, by default, the subclass could
override the definition of any method in the
superclass.

• In C++, this only allowed if the method in
the superclass (base class) is declared as
virtual.

Virtual functions
class Performer
{
public:

// it’s okay to redefine this method
virtual void calculatePay();

// it’s not okay for this one
void myFunct();

}

4

Virtual functions
class Musician : public Performer
{
public:
// this method redefines superclass
void calculatePay();

// this method belongs only to this class
void myFunct();

}

Virtual functions
Performer *P = new Musician();
Musician *M = new Musician();

// Will call Musician’s calculatePay
P->calculatePay();
M->calculatePay();

// Will call Performer’s myFunct
P->myFunct();

// Will call Musician’s myFunct
M->myFunct();

Virtual functions

• Questions?

Abstract Methods

• To declare an abstract method, declare as virtual
and set to 0.

• No abstract keyword like in Java
class Performer
{
public:

// subclass must redefine this method
virtual void calculatePay()=0;

// it’s not okay for this one
void myFunct();

}

Abstract Methods

• Like in Java, any class with abstract
methods is an abstract class and cannot be
directly instantiated.

• Unlike Java, this is implied and not
specifically labeled as abstract.

Interfaces

• There are no explicit interfaces in C++.
• Instead, an interface can be implemented as:

– A class with
• No data member (except for static)
• All methods declared as abstract.

– Subclasses must give definition for all
method…just like in Java interfaces.

5

Interfaces (Java)

public interface Configuration
{

void applyAction();
boolean isGoal();
…

}

Interfaces

class Configuration
{
public:

virtual void applyAction() =
0;

virtual boolean isGoal() = 0;
…

}

Interfaces

• Questions?

Constructing Derived Class Objects

• When an object of a derived class is
constructed:
– The constructor of the base class is called first.
– Base class constructor arguments pased in on

initializer list.

Constructing Derived Class Objects
class Performer
{
public:

Performer (char *name, char *talent);
}
class Musician : public Performer
{
public:

Musician (char *name);

private:
int otherData;

}

Constructing Derived Class Objects

Musician::Musician (char *name) :
Performer (name, “music”), otherData
(0), ...

{
}
• There is no super function in C++
• Call to base class constructor required unless base

class has a default constructor.

• Questions?

6

Constructing Derived Class Objects

• Base class constructors should not call virtual
functions

class Performer
{
public:

Performer (char *name, char *talent);
virtual void calculatePay();

}
class Musician : public Performer
{
public:

Musician (char *name);
void calculatePay();

Constructing Derived Class Objects

Performer::Performer (char *name, char
*talent)

{
...
calculatePay(); // not a good idea

...
}

More on super
• In Java, you can call methods from your

superclass by using super.

class Musician
{
…
public void calculatePay()
{ …

super.calculatePay(); // calls Performer’s
…

}

More on super
• In C++ you must specify the name of the base

class by name (there is no super reference)

void Musician::calculatePay()
{…

Performer::calculatePay();
…

}

Summary

• Inheritance & Polymorphism
• C++ Syntax
• Virtual Functions
• Abstract Classes

– No interfaces
• Construction

