
1

Computability

The Turing Machine
  Motivating idea

  Build a theoretical a “human computer”
  Likened to a human with a paper and pencil that

can solve problems in an algorithmic way
  The theoretical machine provides a means to

determine:
  If an algorithm or procedure exists for a given problem
  What that algorithm or procedure looks like
  How long would it take to run this algorithm or

procedure.

Theory Hall of Fame
  Alan Turing

  1912 – 1954
  b. London, England.

  PhD – Princeton (1938)
  Research

  Cambridge and Manchester
U.

  National Physical Lab, UK

  Creator of the Turing Test

The Church-Turing Thesis
(1936)

  Any algorithmic procedure that can be
carried out by a human or group of
humans can be carried out by some
Turing Machine”
  Equating algorithm with running on a TM
  Turing Machine is still a valid

computational model for most modern
computers.

Theory Hall of Fame
  Alonso Church

  1903 -- 1995
  b. Washington D.C.

  PhD – Princeton (1927)
  Mathematics Prof (1927 –

1967)

  Advisor to both Turing and
Kleene

Undecidability
  Informally, a problem is called unsolvable or

undecidable if there no algorithm exists that
solves the problem.

  Algorithm
  Implies a TM that computes a solution for the

problem

  Solves
  Implies will always give an answer

2

Decision Problem

  Let’s formalize this a bit
  A decision problem is a problem that has a

yes/no answer

  Example:
  Is a given string x a palindrome (Is x ∈ pal?)
  Is a given context free language empty?

Decision Problem

  Running a decision problem on a TM.
  The problem must first be encoded
  Example:

  Is a given string x a palindrome (Is x ∈ pal?)
  x is an instance of the problem

  Is a given context free language empty?
  Instance of a problem is a CFG…must be encoded.

Decision Problem
  Running a decision problem on a TM.

  Once encoded, the encoded instance in provided
as input to a TM.

  The TM must then
  Determine if the input is a valid encoding
  Run, halt,

  Place 1 on the tape if the answer for the input is yes
  Place 0 on the tape if the answer for the input is no

  If such a TM exists for a given decision problem,
the problem is decidable or solvable. Otherwise
the problem is called undecidable or unsolvable.

Solvability

  In other words, a problem is solvable if
the language of all of its encoded “yes”
instances is recursive.
  There is a TM that recognizes the

language.

Universal Language

  Universal Language (Lu)
  Set of all strings wi such that wi ∈L(Mi)
  All strings w that are accepted by the TM

with w as it’s encoding.
  All encodings for TMs that do accept their

encoding when input

  We showed that Lu is not recursive.

An unsolvable problem
  Lu corresponds to the “yes encodings”

of the decision problem:

  Given a Turing Machine M, does it accept
it’s own encoding. (Self-accepting)

  Since Lu is not recursive, this problem is
unsolvable.

3

Reducing one language to
another

  One method of showing whether a
given decision problem is unsolvable is
to convert the encoding of the problem
into another that we know to be either
solvable or unsolvable.

  This is called reducing one language to
another.

Reducing one language to
another

  Formally,
  Let L1 and L2 be languages over Σ1 and Σ2
  We say L1 is reducible to L2 if

  There exists a Turning computable function
  f: Σ1

* → Σ2
* such that

  x ∈ L1 iff f(x) ∈ L2

Reducing one language to
another

  Informally,
  We can take any encoded instance of one

problem
  Use a TM to compute a corresponding encoded

instance of another problem.
  If this other problem has a TM that recognizes

the set of “yes encodings”, we can run that TM
to solve the first problem.

Reducing one language to
another

Conversion
TM

TM
recognizing
L2

Instance
of P1

Corresponding

Instance of P2

YES NO

Reducing one language to
another

  Key facts:
  If L1 is reducible to L2 then

  If L2 is recursive then L1 is also recursive
  If L1 is not recursive then L2 is not recursive.

  If P1 and P2 are decision problems with L1
and L2 the languages of “yes encodings”
respectively and if L1 is reducible to L2 then

  If P2 is solvable then P1 is also solvable
  If P1 is unsolvable then P2 is also unsolvable

The halting problem
  Let’s consider a more general problem about

TMs.

  Given a TM, M, and a string w, is w ∈ T(M)?
  Given a TM, M and a string w

  Will M halt and accept on input w?

  We simply cannot just run the string on the TM
since if w ∉ L(M), M might go into an infinite loop.

4

The halting problem

  The halting problem is unsolvable

  Proof:
  We can use an argument similar to that

used to show that Lu is not recursive.
  Instead, let’s use reduction

To show a problem is
unsolvable

  Find a problem known to be unsolvable
  Reduce this known unsolvable problem

to the problem you wish to show is
unsolvable.

  Only need one to start the ball rolling
  Self-accepting fits the bill.

Halting problem

  Reduce self-accepting to halting
  Self-accepting

  Turing Machine M
  Does this Machine accept it’s own encoding

  Halting
  Turing Machine M
  String w
  Does M halt and accept on input w

Halting problem

  Reduction
  Take an instance of SA and convert it to an

instance of Halting
  Such that a “yes” instance of SA results in a

“yes” instance of halt

Reduction
machine

M M, e(M)

SA Halt

Then SA must be solvable…CONTRADICTION!

Halting problem
  Reduction

  Assume Halting is solvable

Reduction
machine

M M, e(M)

SA Halt

Halt TM

YES

NO

State entry problem

  Given:
  Turing Machine M
  A state q
  A string w

  Problem:
  Will M enter state q on input w.

  The State Entry Problem is unsolvable.

5

State entry problem
  Reduce halting to state entry (SE).

  Halting
  Turing Machine M
  String w
  Does M halt and accept on input w

  State Entry
  Turing Machine M
  String w
  State q
  Does this Machine enter state q on input w.

State entry problem
  Reduction

  Take an instance of Halting (M1, w1) and
convert it to an instance of state-entry (M2,
w2, q)

  Such that a “yes” instance of halt results in a
“yes” instance of self-entry

  From M1 create M2 such that M1 halts iff M2
enters state q.

State entry problem

  Reduction
  M1 will halt only there is no transition

defined (e.g. δ (qi, a))
  Take M1, create a new state q.
  Define new transition in M2 for each

undefined transition in M1 so
  (qi, a) = (q, a R)

  If M1 halts, M2 will enter state q

State entry problem

  Reduction
  Take an instance of Halting and convert it

to an instance of state entry

Reduction
machine

M1, w M2, w, q

Halt State-entry

Then Halting must be solvable…CONTRADICTION!

State entry problem
  Reduction

  Assume State Entry is solvable

Reduction
machine

M1,w M2, w, q

Halt State
Entry

State
Entry TM

YES

NO

Strings of same length
problem

  Given:
  Turing Machine M

  Problem:
  Will M enter accept two strings of the same

length.

  The Same Length Problem is
unsolvable.

6

Same length problem
  Reduce halting to same length.

  Halting
  Turing Machine M
  String w
  Does M halt and accept on input w

  State Entry
  Turing Machine M
  Does this Machine accept 2 strings of the same length.

Same length problem
  Reduction

  Take an instance of Halting (M1, w1) and
convert it to an instance of state-entry
(Mw)

  Such that a “yes” instance of halt results in a
“yes” instance of same length

  From M1 create Mw such that M1 halts on w iff
Mw accepts string of same length

Same length problem

  Reduction
  M1 will halt only there is no transition

defined (e.g. δ (qi, a))
  Define new transition in Mw for each

undefined transition in M1 so
  (qi, a) will force M2 to accept a and b

  If M1 halts on w, Mw accept “a” and
“b” (strings of same length)

Same length problem
  (qi, a) will force Mw to accept “a” and “b”

  We can certainly create TMs that accept “a” and
“b”.

  Mw will do the following:
  Copy w onto it’s tape (after the input)
  Place the tape head at the start of w
  Simulate M1

  For all halting configurations, transition back to the start
of the input (where you can accept both “a” and “b”).

  You will only get back to the start of input of Mw if M1
halts on input w.

Same length problem

  Reduction
  Take an instance of Halting and convert it

to an instance of same length

Reduction
machine

M1, w Mw

Halt Same length

Then Halting must be solvable…CONTRADICTION!

Same length problem
  Reduction

  Assume Same length is solvable

Reduction
machine

M1,w Mw

Halt Same
length

Same
Length
TM

YES

NO

7

Decision Problems
  For recursively enumerable languages

1.  Is the language accepted by a TM empty?
2.  Is the language accepted by a TM finite?
3.  Is the language accepted by a TM regular?
4.  Is the language accepted by a TM context free?
5.  Is the language accepted by 1 TM a subset of or

equal to the language accepted by another?

Rice’s Theorem
  Halting problem can be reduced to each one

of these decision problems.
  Using same argument as same length.

  Rice’s Theorem
  Every non-trivial property of recursively

enumerable languages is unsolvable.
  Where a non-trivial property is a property satisfied by

any non-null subset of the set of recursively enumerable
languages.

Decision Problems
  For recursively enumerable languages
  All unsolvable.

1.  Is the language accepted by a TM empty?
2.  Is the language accepted by a TM finite?
3.  Is the language accepted by a TM regular?
4.  Is the language accepted by a TM context free?
5.  Is the language accepted by 1 TM a subset of or

equal to the language accepted by another?

Questions?

  Let’s look at some more unsolvable
problems…

  Some that don’t have to do with
recursively enumerable languages

Post Correspondence Problem

  Given 2 lists of strings (each list with
the same number of elements) can one
pick a sequence of corresponding
strings from the two lists and form the
same string by concatenation. (PCP)
  Attributed to Emil Post (1946).

Theory Hall of Fame
  Emil Post

  1897 – 1954
  b. Augustów, Poland.

  PhD – Columbia (1920)
  Research

  Princeton.
  Columbia
  Cornell

  Plagued by mental illness

8

Post Correspondence Problem

  Example:

  Choose a sequence of indicies : 1,3,4

  List1: 10 0 100 List 2: 101 10 0

10 01 0 100 1 0

101 100 10 0 010 00

1 2 3 4 5 6

List 1

List 2

Post Correspondence Problem
  Is there a set of indices such that both lists

produce the same string
  Note: Indicies can be repeated

  Try 1, 4, 6
  List 1: 101000 List 2 :101000

10 01 0 100 1 0

101 100 10 0 010 00

1 2 3 4 5 6

List 1

List 2

Post Correspondence Problem
  There is a Modified version of the Post

Correspondence Problem (MPCP)
  Requires that the index 1 appears as the first

index in any solution.
  This can be shown to be unsolvable by reducing

the halting problem to MPCP
  HALTING ≤ MPCP

  MPCP can be reduced to PCP
  HALTING ≤ MPCP ≤ PCP

  Since halting is unsolvable
  MPCP is unsolvable
  PCP is unsolvable.

Recall: Parse trees

S

S + S

a S * S

a a

S

S * S

S + S a

a a

Same string, 2 derivations

CFG Ambiguity

  A CFG is said to be ambiguous if there
is at least 1 string in L(G) having two or
more distinct derivations.

  We said many weeks ago that there is
no algorithm to determine if a given
CFG is ambiguous.
  Now we shall prove it

CFG Ambiguity

  Given a CFG, the problem of whether
this grammar is ambiguous is
unsolvable.
  Reduce PCP to Ambiguity.
  Meaning:

  Take an instance of PCP and convert it to a
CGF G such that:

  G is ambiguous iff the instance of PCP has a solution.

9

CFG Ambiguity

  Instance of PCP
  2 Lists of strings A & B, all strings ∈ Σ*

  A = (w1, w2, …, wn)
  B = (x1, x2, …, xn)

  Build a CFG, G with
  Terminal set that includes Σ plus special

symbols { a1, a2, …an } which represent
indicies into lists A & B

CFG Ambiguity
  Instance of PCP

  2 Lists of strings A & B, all strings ∈ Σ*
  A = (w1, w2, …, wn)
  B = (x1, x2, …, xn)

  Productions of G
  A → w1Aa1 | w2Aa2 | … | wnAan

  A → w1a1 | w2a2 | … | wnan

  B → x1Ba1 | x2Ba2 | … | xnBan

  B → x1a1 | x2a2 | … | xnan

  S → A | B

CFG Ambiguity
  Must show that G is ambiguous iff PCP

instance has a solution.
  Assume PCP has a solution (i1,i2, …,im)
  Consider the derivations

  S ⇒ wi1 Aai1 ⇒ wi1 wi2Aai2ai1 ⇒ … ⇒
  wi1 wi2 … wim A aim …ai2ai1 ⇒ wi1 wi2 … wimaim …ai2ai1

  S ⇒ xi1 Bai1 ⇒ xi1 xi2Aai2ai1 ⇒ … ⇒
  xi1 xi2 … xim A aim …ai2ai1 ⇒ xi1 xi2 … ximaim …ai2ai1

  Since (i1,i2, …,im) is a solution to PCP, wi1 wi2 … wim
will be the same as xi1 xi2 … xim, thus we have 2 separate
derivations for the same string.

  G is ambiguous.

CFG Ambiguity

  Example

10 01 0 100 1 0

101 100 10 0 010 00

1 2 3 4 5 6

List A

List B

Productions:
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6
 S → A | B

CFG Ambiguity

  (1,4,6) is a solution
  Consider 101000
  S ⇒ 10Aa1 ⇒ 10100Aa4a1 ⇒ 101000a6a4a1

  S ⇒ 101Ba1 ⇒ 1010Ba4a1 ⇒ 101000a6a4a1

Productions:
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6
 S → A | B

CFG Ambiguity
  Must show that G is ambiguous iff PCP

instance has a solution.
  Assume G is ambiguous

  A given string could have only 1 derivation starting from
A and 1 starting from B

  If there are 2 derivations, one must derive from A and
the other from B

  The string with 2 derivations will have the tail:
  ai1ai2 … aim for some m ≥ 1
  On the A derivation the head will be wi1wi2…wim

  On the B derivation the head will be xi1xi2…xim

  wi1wi2…wim = xi1xi2…xim

  (i1, i2, …im) is a solution to the PCP

10

Then PCP must be solvable…CONTRADICTION!

CFG Ambiguity
  Reduction

  Assume CFG Ambiguity is solvable

Reduction
machine

A, B G

PCP CFG
amb.

CFG
ambiguity
TM

YES

NO

CFG Ambiguity

  Finally,
  Since PCP is unsolvable, so too is the

problem of ambiguity.

  SA ≤ HALTING ≤ MPCP ≤ PCP ≤ ambiguity

Summary
  Solvable vs Unsolvable problems
  An unsolvable problem

  Self-accepting

  Reducing one language to another
  Rice’s Theorem
  Post Correspondence Problem
  Ambiguity of CFGs.

  Questions?

