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Computability 

The Turing Machine 
  Motivating idea 

  Build a theoretical a “human computer” 
  Likened to a human with a paper and pencil that 

can solve problems in an algorithmic way 
  The theoretical machine provides a means to 

determine: 
  If an algorithm or procedure exists for a given problem 
  What that algorithm or procedure looks like 
  How long would it take to run this algorithm or 

procedure. 

Theory Hall of Fame 
  Alan Turing 

  1912 – 1954   
  b. London, England. 

  PhD – Princeton (1938) 
  Research  

  Cambridge and Manchester 
U. 

  National Physical Lab, UK 

  Creator of the Turing Test 

The Church-Turing Thesis 
(1936) 

  Any algorithmic procedure that can be 
carried out by a human or group of 
humans can be carried out by some 
Turing Machine” 
  Equating algorithm with running on a TM 
  Turing Machine is still a valid 

computational model for most modern 
computers. 

Theory Hall of Fame 
  Alonso Church 

  1903 -- 1995   
  b. Washington D.C.  

  PhD – Princeton  (1927) 
  Mathematics Prof (1927 – 

1967) 

  Advisor to both Turing and 
Kleene 

Undecidability 
  Informally, a problem is called unsolvable or 

undecidable if there no algorithm exists that 
solves the problem. 

  Algorithm 
  Implies a TM that computes a solution for the 

problem 

  Solves 
  Implies will always give an answer 
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Decision Problem 

  Let’s formalize this a bit 
  A decision problem is a problem that has a 

yes/no answer 

  Example: 
  Is a given string x a palindrome (Is x ∈ pal?) 
  Is a given context free language empty? 

Decision Problem 

  Running a decision problem on a TM. 
  The problem must first be encoded 
  Example: 

  Is a given string x a palindrome (Is x ∈ pal?) 
  x is an instance of the problem 

  Is a given context free language empty? 
  Instance of a problem is a CFG…must be encoded. 

Decision Problem 
  Running a decision problem on a TM. 

  Once encoded, the encoded instance in provided 
as input to a TM. 

  The TM must then 
  Determine if the input is a valid encoding 
  Run, halt, 

  Place 1 on the tape if the answer for the input is yes 
  Place 0 on the tape if the answer for the input is no 

  If such a TM exists for a given decision problem, 
the problem is decidable or solvable.  Otherwise 
the problem is called undecidable or unsolvable. 

Solvability 

  In other words, a problem is solvable if 
the language of all of its encoded “yes” 
instances is recursive. 
  There is a TM that recognizes the 

language. 

Universal Language 

  Universal Language (Lu) 
  Set of all strings wi such that wi ∈L(Mi) 
  All strings w that are accepted by the TM 

with w as it’s encoding. 
  All encodings for TMs that do accept their 

encoding when input  

  We showed that Lu is not recursive. 

An unsolvable problem 
  Lu corresponds to the “yes encodings” 

of the decision problem: 

  Given a Turing Machine M, does it accept 
it’s own encoding. (Self-accepting) 

  Since Lu is not recursive, this problem is 
unsolvable. 
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Reducing one language to 
another 

  One method of showing whether a 
given decision problem is unsolvable is 
to convert the encoding of the problem 
into another that we know to be either 
solvable or unsolvable. 

  This is called reducing one language to 
another. 

Reducing one language to 
another 

  Formally,  
  Let L1 and L2 be languages over Σ1 and Σ2 
  We say L1 is reducible to L2 if 

  There exists a Turning computable function  
  f: Σ1

* → Σ2
*  such that 

  x ∈ L1 iff f(x) ∈  L2 

Reducing one language to 
another 

  Informally, 
  We can take any encoded instance of one 

problem 
  Use a TM to compute a corresponding encoded 

instance of another problem. 
  If this other problem has a TM that recognizes 

the set of “yes encodings”, we can run that TM 
to solve the first problem. 

Reducing one language to 
another 

Conversion 
TM 

TM 
recognizing 
L2 

Instance 
of P1 

Corresponding 

Instance of P2 

YES NO 

Reducing one language to 
another 

  Key facts: 
  If L1 is reducible to L2 then 

  If L2 is recursive then L1 is also recursive 
  If L1 is not recursive then L2 is not recursive. 

  If P1 and P2 are decision problems with L1 
and L2 the languages of “yes encodings” 
respectively and if L1 is reducible to L2 then 

  If P2 is solvable then P1 is also solvable 
  If P1 is unsolvable then P2 is also unsolvable 

The halting problem 
  Let’s consider a more general problem about 

TMs. 

  Given a TM, M, and a string w, is w ∈ T(M)? 
  Given a TM, M and a string w 

  Will M halt and accept on input w? 

  We simply cannot just run the string on the TM 
since if w ∉ L(M), M might go into an infinite loop. 
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The halting problem 

  The halting problem is unsolvable 

  Proof: 
  We can use an argument similar to that 

used to show that Lu is not recursive. 
  Instead, let’s use reduction 

To show a problem is 
unsolvable 

  Find a problem known to be unsolvable 
  Reduce this known unsolvable problem 

to the problem you wish to show is 
unsolvable. 

  Only need one to start the ball rolling 
  Self-accepting fits the bill. 

Halting problem 

  Reduce self-accepting to halting 
  Self-accepting 

  Turing Machine M 
  Does this Machine accept it’s own encoding 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

Halting problem 

  Reduction 
  Take an instance of SA and convert it to an 

instance of Halting 
  Such that a “yes” instance of SA results in a 

“yes” instance of halt 

Reduction 
machine 

M M, e(M) 

SA Halt 

Then SA must be solvable…CONTRADICTION! 

Halting problem 
  Reduction 

  Assume Halting is solvable 

Reduction 
machine 

M M, e(M) 

SA Halt 

Halt TM 

YES 

NO 

State entry problem 

  Given: 
  Turing Machine M 
  A state q 
  A string w 

  Problem: 
  Will M enter state q on input w. 

  The State Entry Problem is unsolvable. 
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State entry problem 
  Reduce halting to state entry (SE). 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

  State Entry 
  Turing Machine M 
  String w 
  State q 
  Does this Machine enter state q on input w. 

State entry problem 
  Reduction 

  Take an instance of Halting (M1, w1) and 
convert it to an instance of state-entry (M2, 
w2, q) 

  Such that a “yes” instance of halt results in a 
“yes” instance of self-entry 

  From M1 create M2 such that M1 halts iff M2 
enters state q.  

State entry problem 

  Reduction 
  M1 will halt only there is no transition 

defined (e.g. δ (qi, a) ) 
  Take M1, create a new state q. 
  Define new transition in M2 for each 

undefined transition in M1 so  
  (qi, a) = (q, a R) 

  If M1 halts, M2 will enter state q 

State entry problem 

  Reduction 
  Take an instance of Halting and convert it 

to an instance of state entry 

Reduction 
machine 

M1, w M2, w, q 

Halt State-entry 

Then Halting must be solvable…CONTRADICTION! 

State entry problem 
  Reduction 

  Assume State Entry is solvable 

Reduction 
machine 

M1,w M2, w, q 

Halt State 
Entry 

State 
Entry TM 

YES 

NO 

Strings of same length 
problem 

  Given: 
  Turing Machine M 

  Problem: 
  Will M enter accept two strings of the same 

length. 

  The Same Length Problem is 
unsolvable. 
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Same length problem 
  Reduce halting to same length. 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

  State Entry 
  Turing Machine M 
  Does this Machine accept 2 strings of the same length. 

Same length problem 
  Reduction 

  Take an instance of Halting (M1, w1) and 
convert it to an instance of state-entry 
(Mw) 

  Such that a “yes” instance of halt results in a 
“yes” instance of same length 

  From M1 create Mw such that M1 halts on w iff 
Mw accepts string of same length  

Same length problem 

  Reduction 
  M1 will halt only there is no transition 

defined (e.g. δ (qi, a) ) 
  Define new transition in Mw for each 

undefined transition in M1 so  
  (qi, a) will force M2 to accept a and b 

  If M1 halts on w, Mw accept “a” and 
“b” (strings of same length) 

Same length problem 
  (qi, a) will force Mw to accept “a” and “b” 

  We can certainly create TMs that accept “a” and 
“b”. 

  Mw will do the following: 
  Copy w onto it’s tape (after the input) 
  Place the tape head at the start of w 
  Simulate M1 

  For all halting configurations, transition back to the start 
of the input (where you can accept both “a” and “b”). 

  You will only get back to the start of input of Mw if M1 
halts on input w. 

Same length problem 

  Reduction 
  Take an instance of Halting and convert it 

to an instance of same length 

Reduction 
machine 

M1, w Mw 

Halt Same length 

Then Halting must be solvable…CONTRADICTION! 

Same length problem 
  Reduction 

  Assume Same length is solvable 

Reduction 
machine 

M1,w Mw 

Halt Same 
length 

Same 
Length 
TM 

YES 

NO 
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Decision Problems 
  For recursively enumerable languages 

1.  Is the language accepted by a TM empty? 
2.  Is the language accepted by a TM finite? 
3.  Is the language accepted by a TM regular? 
4.  Is the language accepted by a TM context free? 
5.  Is the language accepted by 1 TM a subset of or 

equal to the language accepted by another? 

Rice’s Theorem 
  Halting problem can be reduced to each one 

of these decision problems. 
  Using same argument as same length. 

  Rice’s Theorem  
  Every non-trivial property of recursively 

enumerable languages is unsolvable. 
  Where a non-trivial property is a property satisfied by 

any non-null subset of the set of recursively enumerable 
languages. 

Decision Problems 
  For recursively enumerable languages 
  All unsolvable. 

1.  Is the language accepted by a TM empty? 
2.  Is the language accepted by a TM finite? 
3.  Is the language accepted by a TM regular? 
4.  Is the language accepted by a TM context free? 
5.  Is the language accepted by 1 TM a subset of or 

equal to the language accepted by another? 

Questions? 

  Let’s look at some more unsolvable 
problems… 

  Some that don’t have to do with 
recursively enumerable languages 

Post Correspondence Problem 

  Given 2 lists of strings (each list with 
the same number of elements) can one 
pick a sequence of corresponding 
strings from the two lists and form the 
same string by concatenation. (PCP) 
  Attributed to Emil Post (1946). 

Theory Hall of Fame 
  Emil Post 

  1897 – 1954   
  b. Augustów, Poland. 

  PhD – Columbia (1920) 
  Research  

  Princeton. 
  Columbia 
  Cornell 

  Plagued by mental illness 
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Post Correspondence Problem 

  Example: 

  Choose a sequence of indicies : 1,3,4 

  List1: 10 0 100     List 2: 101 10 0 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 

Post Correspondence Problem 
  Is there a set of indices such that both lists 

produce the same string 
  Note: Indicies can be repeated 

  Try 1, 4, 6 
  List 1: 101000          List 2 :101000 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 

Post Correspondence Problem 
  There is a Modified version of the Post 

Correspondence Problem (MPCP) 
  Requires that the index 1 appears as the first 

index in any solution. 
  This can be shown to be unsolvable by reducing 

the halting problem to MPCP 
  HALTING ≤ MPCP 

  MPCP can be reduced to PCP 
  HALTING ≤ MPCP ≤ PCP 

  Since halting is unsolvable 
  MPCP is unsolvable 
  PCP is unsolvable. 

Recall: Parse trees 

S 

S + S 

a S * S 

a a 

S 

S * S 

S + S a 

a a 

Same string, 2 derivations 

CFG Ambiguity 

  A CFG is said to be ambiguous if there 
is at least 1 string in L(G) having two or 
more distinct derivations. 

  We said many weeks ago that there is 
no algorithm to determine if a given 
CFG is ambiguous. 
  Now we shall prove it 

CFG Ambiguity 

  Given a CFG, the problem of whether 
this grammar is ambiguous is 
unsolvable. 
  Reduce PCP to Ambiguity. 
  Meaning: 

  Take an instance of PCP and convert it to a 
CGF G such that: 

  G is ambiguous iff the instance of PCP has a solution. 
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CFG Ambiguity 

  Instance of PCP 
  2 Lists of strings A & B, all strings ∈ Σ* 

  A = (w1, w2, …, wn) 
  B = (x1, x2, …, xn) 

  Build a CFG, G with 
  Terminal set that includes Σ plus special 

symbols { a1, a2, …an } which represent 
indicies into lists A & B 

CFG Ambiguity 
  Instance of PCP 

  2 Lists of strings A & B, all strings ∈ Σ* 
  A = (w1, w2, …, wn) 
  B = (x1, x2, …, xn) 

  Productions of G 
  A → w1Aa1 | w2Aa2 | … | wnAan 

  A → w1a1 | w2a2 | … | wnan 

  B → x1Ba1 | x2Ba2 | … | xnBan 

  B → x1a1 | x2a2 | … | xnan 

  S → A | B 

CFG Ambiguity 
  Must show that G is ambiguous iff PCP 

instance has a solution. 
  Assume PCP has a solution (i1,i2, …,im) 
  Consider the derivations 

  S ⇒ wi1 Aai1 ⇒ wi1 wi2Aai2ai1 ⇒ … ⇒  
          wi1 wi2 … wim A aim …ai2ai1 ⇒ wi1 wi2 … wimaim …ai2ai1  

  S ⇒ xi1 Bai1 ⇒ xi1 xi2Aai2ai1 ⇒ … ⇒  
          xi1 xi2 … xim A aim …ai2ai1 ⇒ xi1 xi2 … ximaim …ai2ai1 

  Since (i1,i2, …,im) is a solution to PCP, wi1 wi2 … wim  
will be the same as xi1 xi2 … xim, thus we have 2 separate 
derivations for the same string. 

  G is ambiguous. 

CFG Ambiguity 

  Example 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List A 

List B 

Productions: 
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6  
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6  
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6  
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6  
 S → A | B 

CFG Ambiguity 

  (1,4,6) is a solution 
  Consider 101000 
  S ⇒ 10Aa1 ⇒ 10100Aa4a1 ⇒ 101000a6a4a1 

  S ⇒ 101Ba1 ⇒ 1010Ba4a1 ⇒ 101000a6a4a1 

Productions: 
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6  
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6  
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6  
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6  
 S → A | B 

CFG Ambiguity 
  Must show that G is ambiguous iff PCP 

instance has a solution. 
  Assume G is ambiguous 

  A given string could have only 1 derivation starting from 
A and 1 starting from B 

  If there are 2 derivations, one must derive from A and 
the other from B 

  The string with 2 derivations will have the tail: 
  ai1ai2 … aim  for some m ≥ 1 
  On the A derivation the head will be wi1wi2…wim 

  On the B derivation the head will be xi1xi2…xim 

  wi1wi2…wim = xi1xi2…xim 

  (i1, i2, …im) is a solution to the PCP 
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Then PCP must be solvable…CONTRADICTION! 

CFG Ambiguity 
  Reduction 

  Assume CFG Ambiguity is solvable 

Reduction 
machine 

A, B G 

PCP CFG 
amb. 

CFG 
ambiguity 
TM 

YES 

NO 

CFG Ambiguity 

  Finally, 
  Since PCP is unsolvable, so too is the 

problem of ambiguity. 

   SA ≤ HALTING ≤ MPCP ≤ PCP ≤ ambiguity 

Summary 
  Solvable vs Unsolvable problems 
  An unsolvable problem 

  Self-accepting 

  Reducing one language to another 
  Rice’s Theorem 
  Post Correspondence Problem 
  Ambiguity of CFGs. 

  Questions? 


