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Computability 

The Turing Machine 
  Motivating idea 

  Build a theoretical a “human computer” 
  Likened to a human with a paper and pencil that 

can solve problems in an algorithmic way 
  The theoretical machine provides a means to 

determine: 
  If an algorithm or procedure exists for a given problem 
  What that algorithm or procedure looks like 
  How long would it take to run this algorithm or 

procedure. 

Theory Hall of Fame 
  Alan Turing 

  1912 – 1954   
  b. London, England. 

  PhD – Princeton (1938) 
  Research  

  Cambridge and Manchester 
U. 

  National Physical Lab, UK 

  Creator of the Turing Test 

The Church-Turing Thesis 
(1936) 

  Any algorithmic procedure that can be 
carried out by a human or group of 
humans can be carried out by some 
Turing Machine” 
  Equating algorithm with running on a TM 
  Turing Machine is still a valid 

computational model for most modern 
computers. 

Theory Hall of Fame 
  Alonso Church 

  1903 -- 1995   
  b. Washington D.C.  

  PhD – Princeton  (1927) 
  Mathematics Prof (1927 – 

1967) 

  Advisor to both Turing and 
Kleene 

Undecidability 
  Informally, a problem is called unsolvable or 

undecidable if there no algorithm exists that 
solves the problem. 

  Algorithm 
  Implies a TM that computes a solution for the 

problem 

  Solves 
  Implies will always give an answer 
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Decision Problem 

  Let’s formalize this a bit 
  A decision problem is a problem that has a 

yes/no answer 

  Example: 
  Is a given string x a palindrome (Is x ∈ pal?) 
  Is a given context free language empty? 

Decision Problem 

  Running a decision problem on a TM. 
  The problem must first be encoded 
  Example: 

  Is a given string x a palindrome (Is x ∈ pal?) 
  x is an instance of the problem 

  Is a given context free language empty? 
  Instance of a problem is a CFG…must be encoded. 

Decision Problem 
  Running a decision problem on a TM. 

  Once encoded, the encoded instance in provided 
as input to a TM. 

  The TM must then 
  Determine if the input is a valid encoding 
  Run, halt, 

  Place 1 on the tape if the answer for the input is yes 
  Place 0 on the tape if the answer for the input is no 

  If such a TM exists for a given decision problem, 
the problem is decidable or solvable.  Otherwise 
the problem is called undecidable or unsolvable. 

Solvability 

  In other words, a problem is solvable if 
the language of all of its encoded “yes” 
instances is recursive. 
  There is a TM that recognizes the 

language. 

Universal Language 

  Universal Language (Lu) 
  Set of all strings wi such that wi ∈L(Mi) 
  All strings w that are accepted by the TM 

with w as it’s encoding. 
  All encodings for TMs that do accept their 

encoding when input  

  We showed that Lu is not recursive. 

An unsolvable problem 
  Lu corresponds to the “yes encodings” 

of the decision problem: 

  Given a Turing Machine M, does it accept 
it’s own encoding. (Self-accepting) 

  Since Lu is not recursive, this problem is 
unsolvable. 
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Reducing one language to 
another 

  One method of showing whether a 
given decision problem is unsolvable is 
to convert the encoding of the problem 
into another that we know to be either 
solvable or unsolvable. 

  This is called reducing one language to 
another. 

Reducing one language to 
another 

  Formally,  
  Let L1 and L2 be languages over Σ1 and Σ2 
  We say L1 is reducible to L2 if 

  There exists a Turning computable function  
  f: Σ1

* → Σ2
*  such that 

  x ∈ L1 iff f(x) ∈  L2 

Reducing one language to 
another 

  Informally, 
  We can take any encoded instance of one 

problem 
  Use a TM to compute a corresponding encoded 

instance of another problem. 
  If this other problem has a TM that recognizes 

the set of “yes encodings”, we can run that TM 
to solve the first problem. 

Reducing one language to 
another 

Conversion 
TM 

TM 
recognizing 
L2 

Instance 
of P1 

Corresponding 

Instance of P2 

YES NO 

Reducing one language to 
another 

  Key facts: 
  If L1 is reducible to L2 then 

  If L2 is recursive then L1 is also recursive 
  If L1 is not recursive then L2 is not recursive. 

  If P1 and P2 are decision problems with L1 
and L2 the languages of “yes encodings” 
respectively and if L1 is reducible to L2 then 

  If P2 is solvable then P1 is also solvable 
  If P1 is unsolvable then P2 is also unsolvable 

The halting problem 
  Let’s consider a more general problem about 

TMs. 

  Given a TM, M, and a string w, is w ∈ T(M)? 
  Given a TM, M and a string w 

  Will M halt and accept on input w? 

  We simply cannot just run the string on the TM 
since if w ∉ L(M), M might go into an infinite loop. 
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The halting problem 

  The halting problem is unsolvable 

  Proof: 
  We can use an argument similar to that 

used to show that Lu is not recursive. 
  Instead, let’s use reduction 

To show a problem is 
unsolvable 

  Find a problem known to be unsolvable 
  Reduce this known unsolvable problem 

to the problem you wish to show is 
unsolvable. 

  Only need one to start the ball rolling 
  Self-accepting fits the bill. 

Halting problem 

  Reduce self-accepting to halting 
  Self-accepting 

  Turing Machine M 
  Does this Machine accept it’s own encoding 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

Halting problem 

  Reduction 
  Take an instance of SA and convert it to an 

instance of Halting 
  Such that a “yes” instance of SA results in a 

“yes” instance of halt 

Reduction 
machine 

M M, e(M) 

SA Halt 

Then SA must be solvable…CONTRADICTION! 

Halting problem 
  Reduction 

  Assume Halting is solvable 

Reduction 
machine 

M M, e(M) 

SA Halt 

Halt TM 

YES 

NO 

State entry problem 

  Given: 
  Turing Machine M 
  A state q 
  A string w 

  Problem: 
  Will M enter state q on input w. 

  The State Entry Problem is unsolvable. 
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State entry problem 
  Reduce halting to state entry (SE). 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

  State Entry 
  Turing Machine M 
  String w 
  State q 
  Does this Machine enter state q on input w. 

State entry problem 
  Reduction 

  Take an instance of Halting (M1, w1) and 
convert it to an instance of state-entry (M2, 
w2, q) 

  Such that a “yes” instance of halt results in a 
“yes” instance of self-entry 

  From M1 create M2 such that M1 halts iff M2 
enters state q.  

State entry problem 

  Reduction 
  M1 will halt only there is no transition 

defined (e.g. δ (qi, a) ) 
  Take M1, create a new state q. 
  Define new transition in M2 for each 

undefined transition in M1 so  
  (qi, a) = (q, a R) 

  If M1 halts, M2 will enter state q 

State entry problem 

  Reduction 
  Take an instance of Halting and convert it 

to an instance of state entry 

Reduction 
machine 

M1, w M2, w, q 

Halt State-entry 

Then Halting must be solvable…CONTRADICTION! 

State entry problem 
  Reduction 

  Assume State Entry is solvable 

Reduction 
machine 

M1,w M2, w, q 

Halt State 
Entry 

State 
Entry TM 

YES 

NO 

Strings of same length 
problem 

  Given: 
  Turing Machine M 

  Problem: 
  Will M enter accept two strings of the same 

length. 

  The Same Length Problem is 
unsolvable. 
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Same length problem 
  Reduce halting to same length. 

  Halting 
  Turing Machine M 
  String w 
  Does M halt and accept on input w 

  State Entry 
  Turing Machine M 
  Does this Machine accept 2 strings of the same length. 

Same length problem 
  Reduction 

  Take an instance of Halting (M1, w1) and 
convert it to an instance of state-entry 
(Mw) 

  Such that a “yes” instance of halt results in a 
“yes” instance of same length 

  From M1 create Mw such that M1 halts on w iff 
Mw accepts string of same length  

Same length problem 

  Reduction 
  M1 will halt only there is no transition 

defined (e.g. δ (qi, a) ) 
  Define new transition in Mw for each 

undefined transition in M1 so  
  (qi, a) will force M2 to accept a and b 

  If M1 halts on w, Mw accept “a” and 
“b” (strings of same length) 

Same length problem 
  (qi, a) will force Mw to accept “a” and “b” 

  We can certainly create TMs that accept “a” and 
“b”. 

  Mw will do the following: 
  Copy w onto it’s tape (after the input) 
  Place the tape head at the start of w 
  Simulate M1 

  For all halting configurations, transition back to the start 
of the input (where you can accept both “a” and “b”). 

  You will only get back to the start of input of Mw if M1 
halts on input w. 

Same length problem 

  Reduction 
  Take an instance of Halting and convert it 

to an instance of same length 

Reduction 
machine 

M1, w Mw 

Halt Same length 

Then Halting must be solvable…CONTRADICTION! 

Same length problem 
  Reduction 

  Assume Same length is solvable 

Reduction 
machine 

M1,w Mw 

Halt Same 
length 

Same 
Length 
TM 

YES 

NO 
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Decision Problems 
  For recursively enumerable languages 

1.  Is the language accepted by a TM empty? 
2.  Is the language accepted by a TM finite? 
3.  Is the language accepted by a TM regular? 
4.  Is the language accepted by a TM context free? 
5.  Is the language accepted by 1 TM a subset of or 

equal to the language accepted by another? 

Rice’s Theorem 
  Halting problem can be reduced to each one 

of these decision problems. 
  Using same argument as same length. 

  Rice’s Theorem  
  Every non-trivial property of recursively 

enumerable languages is unsolvable. 
  Where a non-trivial property is a property satisfied by 

any non-null subset of the set of recursively enumerable 
languages. 

Decision Problems 
  For recursively enumerable languages 
  All unsolvable. 

1.  Is the language accepted by a TM empty? 
2.  Is the language accepted by a TM finite? 
3.  Is the language accepted by a TM regular? 
4.  Is the language accepted by a TM context free? 
5.  Is the language accepted by 1 TM a subset of or 

equal to the language accepted by another? 

Questions? 

  Let’s look at some more unsolvable 
problems… 

  Some that don’t have to do with 
recursively enumerable languages 

Post Correspondence Problem 

  Given 2 lists of strings (each list with 
the same number of elements) can one 
pick a sequence of corresponding 
strings from the two lists and form the 
same string by concatenation. (PCP) 
  Attributed to Emil Post (1946). 

Theory Hall of Fame 
  Emil Post 

  1897 – 1954   
  b. Augustów, Poland. 

  PhD – Columbia (1920) 
  Research  

  Princeton. 
  Columbia 
  Cornell 

  Plagued by mental illness 
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Post Correspondence Problem 

  Example: 

  Choose a sequence of indicies : 1,3,4 

  List1: 10 0 100     List 2: 101 10 0 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 

Post Correspondence Problem 
  Is there a set of indices such that both lists 

produce the same string 
  Note: Indicies can be repeated 

  Try 1, 4, 6 
  List 1: 101000          List 2 :101000 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List 1 

List 2 

Post Correspondence Problem 
  There is a Modified version of the Post 

Correspondence Problem (MPCP) 
  Requires that the index 1 appears as the first 

index in any solution. 
  This can be shown to be unsolvable by reducing 

the halting problem to MPCP 
  HALTING ≤ MPCP 

  MPCP can be reduced to PCP 
  HALTING ≤ MPCP ≤ PCP 

  Since halting is unsolvable 
  MPCP is unsolvable 
  PCP is unsolvable. 

Recall: Parse trees 

S 

S + S 

a S * S 

a a 

S 

S * S 

S + S a 

a a 

Same string, 2 derivations 

CFG Ambiguity 

  A CFG is said to be ambiguous if there 
is at least 1 string in L(G) having two or 
more distinct derivations. 

  We said many weeks ago that there is 
no algorithm to determine if a given 
CFG is ambiguous. 
  Now we shall prove it 

CFG Ambiguity 

  Given a CFG, the problem of whether 
this grammar is ambiguous is 
unsolvable. 
  Reduce PCP to Ambiguity. 
  Meaning: 

  Take an instance of PCP and convert it to a 
CGF G such that: 

  G is ambiguous iff the instance of PCP has a solution. 
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CFG Ambiguity 

  Instance of PCP 
  2 Lists of strings A & B, all strings ∈ Σ* 

  A = (w1, w2, …, wn) 
  B = (x1, x2, …, xn) 

  Build a CFG, G with 
  Terminal set that includes Σ plus special 

symbols { a1, a2, …an } which represent 
indicies into lists A & B 

CFG Ambiguity 
  Instance of PCP 

  2 Lists of strings A & B, all strings ∈ Σ* 
  A = (w1, w2, …, wn) 
  B = (x1, x2, …, xn) 

  Productions of G 
  A → w1Aa1 | w2Aa2 | … | wnAan 

  A → w1a1 | w2a2 | … | wnan 

  B → x1Ba1 | x2Ba2 | … | xnBan 

  B → x1a1 | x2a2 | … | xnan 

  S → A | B 

CFG Ambiguity 
  Must show that G is ambiguous iff PCP 

instance has a solution. 
  Assume PCP has a solution (i1,i2, …,im) 
  Consider the derivations 

  S ⇒ wi1 Aai1 ⇒ wi1 wi2Aai2ai1 ⇒ … ⇒  
          wi1 wi2 … wim A aim …ai2ai1 ⇒ wi1 wi2 … wimaim …ai2ai1  

  S ⇒ xi1 Bai1 ⇒ xi1 xi2Aai2ai1 ⇒ … ⇒  
          xi1 xi2 … xim A aim …ai2ai1 ⇒ xi1 xi2 … ximaim …ai2ai1 

  Since (i1,i2, …,im) is a solution to PCP, wi1 wi2 … wim  
will be the same as xi1 xi2 … xim, thus we have 2 separate 
derivations for the same string. 

  G is ambiguous. 

CFG Ambiguity 

  Example 

10 01 0 100 1 0 

101 100 10 0 010 00 

1 2 3 4 5 6

List A 

List B 

Productions: 
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6  
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6  
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6  
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6  
 S → A | B 

CFG Ambiguity 

  (1,4,6) is a solution 
  Consider 101000 
  S ⇒ 10Aa1 ⇒ 10100Aa4a1 ⇒ 101000a6a4a1 

  S ⇒ 101Ba1 ⇒ 1010Ba4a1 ⇒ 101000a6a4a1 

Productions: 
 A → 10Aa1 | 01Aa2 | 0Aa3 | 100Aa4 | 1Aa5 | 0Aa6  
 A → 10a1 | 01a2 | 0a3 | 100a4 | 1a5 | 0a6  
 B → 101Ba1 | 100Ba2 | 10Ba3 | 0Ba4 | 010Ba5 | 00Ba6  
 B → 101a1 | 100a2 | 10a3 | 0a4 | 010a5 | 00a6  
 S → A | B 

CFG Ambiguity 
  Must show that G is ambiguous iff PCP 

instance has a solution. 
  Assume G is ambiguous 

  A given string could have only 1 derivation starting from 
A and 1 starting from B 

  If there are 2 derivations, one must derive from A and 
the other from B 

  The string with 2 derivations will have the tail: 
  ai1ai2 … aim  for some m ≥ 1 
  On the A derivation the head will be wi1wi2…wim 

  On the B derivation the head will be xi1xi2…xim 

  wi1wi2…wim = xi1xi2…xim 

  (i1, i2, …im) is a solution to the PCP 
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Then PCP must be solvable…CONTRADICTION! 

CFG Ambiguity 
  Reduction 

  Assume CFG Ambiguity is solvable 

Reduction 
machine 

A, B G 

PCP CFG 
amb. 

CFG 
ambiguity 
TM 

YES 

NO 

CFG Ambiguity 

  Finally, 
  Since PCP is unsolvable, so too is the 

problem of ambiguity. 

   SA ≤ HALTING ≤ MPCP ≤ PCP ≤ ambiguity 

Summary 
  Solvable vs Unsolvable problems 
  An unsolvable problem 

  Self-accepting 

  Reducing one language to another 
  Rice’s Theorem 
  Post Correspondence Problem 
  Ambiguity of CFGs. 

  Questions? 


