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Pushdown Automata

Pushdown Automata
 A pushdown automata (PDA) is essentially:

 An NFA with a stack
 A “move” of a PDA will depend upon

 Current state of the machine
 Current symbol being read in
 Current symbol popped off the top of the stack

 With each “move”, the machine can
 Move into a new state
 Push symbols on to the stack

Pushdown Automata
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Pushdown Automata

 The stack
 The stack has its own alphabet
 Included in this alphabet is a special

symbol used to indicate an empty stack.
(z)

 Note that the basic PDA is non-
deterministic!

Pushdown Automata
 Let’s formalize this:

 A pushdown automata (PDA) is a 7-tuple:
 M = (Q, Σ, Γ , δ, q0, z, F) where

 Q = finite set of states
 Σ = tape alphabet
 Γ = stack alphabet (may have symbols in common w/ Σ)
 q0 ∈ Q = start state
 z ∈ Γ = initial stack symbol
 F ⊆ Q = set of accepting states
 δ = transition function

Pushdown Automata
 About this transition function δ:

 During a move of a PDA:
 At most one character is read from the input tape

 λ transitions are okay

 The topmost character is popped from the stack
 The machine will move to a new state based on:

 The character read from the tape
 The character popped off the stack
 The current state of the machine

 0 or more symbols from the stack alphabet are pushed
onto the stack.
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Pushdown Automata
 Formally:

 δ: Q x (Σ ∪ {λ}) x Γ → (finite subsets of Q x Γ*)

 Domain:
 Q = state
 (Σ ∪ {λ}) = symbol read off tape
 Γ = symbol popped off stack

 Range
 Q = new state
 Γ* = symbols pushed onto the stack

Pushdown Automata

 Example:
 δ (q, a, a ) = ( p, aa)

 Meaning:
 When in state q,
 Reading in an a from the tape
 With an a popped off the stack

 The machine will
 Go into state p
 Push the string “aa” onto the stack

Pushdown Automata
 Configuration of a PDA

 Gives the current “configuration” of the
machine

 (p, x, α) where
 p is the current state
 x is a string indicating what remains to be read

on the tape
 α is the current contents of the stack.

Pushdown Automata

 Move of a PDA:
 We can describe a single move of a PDA:

 (q, x, α) a (p, y, β)

 If:
 x = ay, α = γX, β = YX

 And
 δ (q, x, γ) includes (p, Y)  or
 δ (q, ε, γ) includes (p, Y)  and x = y.

Pushdown Automata

 Moves of a PDA
 We can write:

 (q, x, α) a* (p, y, β)

 If
 You can get from one configuration to the other by

applying 0 or more moves.

Pushdown Automata
 Strings accepted by a PDA by Final State

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, β)
 End in an accepting state (q ∈F)
 All characters of x have been read
 Some string on the stack (doesn’t matter what).



3

Pushdown Automata

 Strings accepted by a PDA (Final State)
 Let M = (Q, Σ, Γ , δ, q0,z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, β)

 Where
 q ∈F
 β ∈ Γ*

Pushdown Automata
 The language accepted by a PDA

 Let M = (Q, Σ, Γ, q0, z, F, δ)  be a PDA
 The language accepted by M by final state,

 Denoted L(M) is
 The set of all strings x that are accepted by M

by final state

Pushdown Automata
 Let’s look at an example:

 L = { xcxr | x ∈ { a,b }* }

 Basic idea for building a PDA
 Read chars off the tape until you reach the ‘c’.
 As you read chars push them on the stack
 After reading the c, match the chars read with the chars

popped off the stack until all chars are read
 If at any point the char read does not match the char

popped, the machine “crashes”

Pushdown Automata
 Let’s look at an example:

 L = { xcxr | x ∈ { a,b }* }

 The PDA will have 4 states
 State 0 (initial) : reading before the ‘c’
 State 1: read the ‘c’
 State 2 :read after ‘c’, comparing chars
 State 3: (accepting): move only after all chars

read and stack empty

Pushdown Automata

 Let’s look at an example:
 L = { xcxr | x ∈ { a,b }* }

q0 q1 q2

a, z / a z

b, z / b z

b, a / ba

b, b / bb
a, b / ab

a, a / aa

c, z / z

c, a / a

c, b / b

λ, z / z

λ, a / a

λ, b / b

a, a / λ
b, b / λ

q3
λ, z / z

PDA Example
 Transition for abcba

 (q0, abcba, Z) a (q0, bcba, a)   // push a
                        a (q0, cba, ba)   // push b
                        a (q1, ba, ba)     // goto 1
                        a (q2, ba, ba)     // λ trans
                        a (q2, a, a)         // pop b
                        a (q2, λ, z)        // pop a
                        a (q3, λ, z)        // Accept!
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PDA Example

 Transition for abcb
 (q0, abcb, z) a (q0, bcb, a)   // push a
                      a (q0, cb, ba)   // push b
                      a (q1, b, ba)     // goto 1
                      a (q2, b, ba)     // ε trans
                      a (q2, λ, a)         // pop b

                      Nowhere to go    // Reject!

Pushdown Automata

 I bet you’re wondering if JFLAP can
handle PDAs!
 Yes, it can…
 Let’s take a look.

Pushdown Automata

 Let’s look at another example:
 L = { xxr | x ∈ { a,b }* }

 Basic idea for building a PDA
 Much like last example, except

 This time we don’t know when to start popping and
comparing

 Since PDAs are non-deterministic, this is not a
problem

Pushdown Automata
 Let’s look at another example:

 L = { xxr | x ∈ { a,b }* }

 The PDA will have 3 states
 State 0 (initial) : reading before the center of string
 State 1: read after center of string, comparing chars
 State 2 (accepting): after all chars read, stack should be

empty
 The machine can choose to go from state 0 to

state 1 at any time:
 Will result in many “wrong” set of moves
 All you need is one “right” set of moves for a string to be

accepted.

Pushdown Automata

 Let’s look at an example:
 L = { xxr | x ∈ { a,b }* }

q0 q1

a, z / a z

b, z / b z

b, a / ba

b, b / bb
a, b / ab

a, a / aa

λ, z / z

λ, a / a

λ, b / b

a, a / λ
b, b / λ

q2
λ, z / z

PDA Example
 Let’s see a bad transition set for abba

 (q0, abba,z) a (q0, bba, a)   // push a
                      a (q0, ba, ba)   // push b
                      a (q0, a, bba)   // push b
                      a (q1, a, bba)   // λ trans
                      Nowhere to go // Reject!
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PDA Example
 Let’s see a good transition set for abba

 (q0, abba, z) a (q0, bba, a)   // push a
                      a (q0, ba, ba)   // push b
                      a (q1, ba, ba)   // ε trans
                      a (q1, a, a)       // pop b
                      a (q1, λ, Z)      // pop a
                      a (q2, λ, Z)      // Accept!

Pushdown Automata

 “Let’s go to the video tape”
 Actually JFLAP…

Pushdown Automata
 Strings accepted by a PDA by Final State

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, β)
 End in an accepting state (q ∈F)
 All characters of x have been read
 Some string on the stack (doesn’t matter what).

Pushdown Automata

 Strings accepted by a PDA (Final State)
 Let M = (Q, Σ, Γ , δ, q0, z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, β)

 Where
 q ∈A
 β ∈ Γ*

Pushdown Automata
 Strings accepted by a PDA by Empty Stack

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, λ)
 End in any state
 All characters of x have been read
 Stack is empty

Pushdown Automata

 Strings accepted by a PDA (Empty
Stack)
 Let M = (Q, Σ, Γ , δ, q0, z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, λ)

 Where
 q ∈Q
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Pushdown Automata
 The language accepted by a PDA

 Let M = (Q, Σ, Γ, q0, z, F, δ)  be a PDA
 The language accepted by M by final state,

 Denoted L(M) is
 The set of all strings x that are accepted by M by final

state

 The language accepted by M by empty stack,
 Denoted N(M) is
 The set of all strings x that are accepted by M by empty

stack
 We will show that all languages accepted by a PDA by final state

will be accepted by an equivalent PDA by empty stack and visa
versa

Final State vs. Empty Stack

 The two means by which a PDA can
accept are equivalent wrt the class of
languages accepted
 Given a PDA M such that L = L(M), there

exists a PDA M’ such that L = N(M’)
 Given a PDA M such that L = N(M), there

exists a PDA M’ such that L = L(M’)

Final State → Empty Stack

 Final State → Empty Stack
 Given a PDA PF = (Q, Σ, Γ ,δF, q0, z ,F)

and L = L (PF) then there exists a PDA PN
such that L = N (PN)

 We will build such a PDA

Accept by Empty Stack

 Final State → Empty Stack
 Basic idea

 Transitions of PN will mimic those of PF

 Create a new state in PN that will empty the
stack.

 The machine can move into this new state
whenever the machine is in an accepting state
of PF

Accept by Empty Stack
 Final State → Empty Stack

 We must be careful though
 PF may crash when the stack is empty.
 In those cases we need to assure that PN does not

accept
 To solve this:

 Create a new empty stack symbol X0 which is placed on
the stack before PF s empty stack marker (z)

 z will only be popped by the new “stack emptying state

 The first move of PN will be to place zX0 on PN stack.

Final State → Empty Stack

 Final State → Empty Stack
 PN = (

 Q ∪ {po, p},
 Σ,
 Γ ∪ {X0}
 δN

 p0,
 X0)
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Accept by Empty Stack

 Final State → Empty Stack

Empty Stack → Final State

 Empty Stack → Final State
 Given a PDA PN = (Q, Σ, Γ ,δN, q0, Z0)  and

L = N (PN) then there exists a PDA PF such
that L = L (PF)

 We will build such a PDA
 Actually, you will…Exercise 17

Reality Check
 Pushdown Automata

 NFAs with a stack
 Move depends on tape symbol, state, and top of

stack.
 Move involves popping stack, moving to new state

and pushing onto stack
 Basic PDA is nod-deterministic.

 Accept by final state
 Accept by empty stack

Next time

 PDAs…the perfect machine for CFLs…

 Questions?


