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Pushdown Automata

Pushdown Automata
 A pushdown automata (PDA) is essentially:

 An NFA with a stack
 A “move” of a PDA will depend upon

 Current state of the machine
 Current symbol being read in
 Current symbol popped off the top of the stack

 With each “move”, the machine can
 Move into a new state
 Push symbols on to the stack

Pushdown Automata
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Pushdown Automata

 The stack
 The stack has its own alphabet
 Included in this alphabet is a special

symbol used to indicate an empty stack.
(z)

 Note that the basic PDA is non-
deterministic!

Pushdown Automata
 Let’s formalize this:

 A pushdown automata (PDA) is a 7-tuple:
 M = (Q, Σ, Γ , δ, q0, z, F) where

 Q = finite set of states
 Σ = tape alphabet
 Γ = stack alphabet (may have symbols in common w/ Σ)
 q0 ∈ Q = start state
 z ∈ Γ = initial stack symbol
 F ⊆ Q = set of accepting states
 δ = transition function

Pushdown Automata
 About this transition function δ:

 During a move of a PDA:
 At most one character is read from the input tape

 λ transitions are okay

 The topmost character is popped from the stack
 The machine will move to a new state based on:

 The character read from the tape
 The character popped off the stack
 The current state of the machine

 0 or more symbols from the stack alphabet are pushed
onto the stack.
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Pushdown Automata
 Formally:

 δ: Q x (Σ ∪ {λ}) x Γ → (finite subsets of Q x Γ*)

 Domain:
 Q = state
 (Σ ∪ {λ}) = symbol read off tape
 Γ = symbol popped off stack

 Range
 Q = new state
 Γ* = symbols pushed onto the stack

Pushdown Automata

 Example:
 δ (q, a, a ) = ( p, aa)

 Meaning:
 When in state q,
 Reading in an a from the tape
 With an a popped off the stack

 The machine will
 Go into state p
 Push the string “aa” onto the stack

Pushdown Automata
 Configuration of a PDA

 Gives the current “configuration” of the
machine

 (p, x, α) where
 p is the current state
 x is a string indicating what remains to be read

on the tape
 α is the current contents of the stack.

Pushdown Automata

 Move of a PDA:
 We can describe a single move of a PDA:

 (q, x, α) a (p, y, β)

 If:
 x = ay, α = γX, β = YX

 And
 δ (q, x, γ) includes (p, Y)  or
 δ (q, ε, γ) includes (p, Y)  and x = y.

Pushdown Automata

 Moves of a PDA
 We can write:

 (q, x, α) a* (p, y, β)

 If
 You can get from one configuration to the other by

applying 0 or more moves.

Pushdown Automata
 Strings accepted by a PDA by Final State

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, β)
 End in an accepting state (q ∈F)
 All characters of x have been read
 Some string on the stack (doesn’t matter what).



3

Pushdown Automata

 Strings accepted by a PDA (Final State)
 Let M = (Q, Σ, Γ , δ, q0,z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, β)

 Where
 q ∈F
 β ∈ Γ*

Pushdown Automata
 The language accepted by a PDA

 Let M = (Q, Σ, Γ, q0, z, F, δ)  be a PDA
 The language accepted by M by final state,

 Denoted L(M) is
 The set of all strings x that are accepted by M

by final state

Pushdown Automata
 Let’s look at an example:

 L = { xcxr | x ∈ { a,b }* }

 Basic idea for building a PDA
 Read chars off the tape until you reach the ‘c’.
 As you read chars push them on the stack
 After reading the c, match the chars read with the chars

popped off the stack until all chars are read
 If at any point the char read does not match the char

popped, the machine “crashes”

Pushdown Automata
 Let’s look at an example:

 L = { xcxr | x ∈ { a,b }* }

 The PDA will have 4 states
 State 0 (initial) : reading before the ‘c’
 State 1: read the ‘c’
 State 2 :read after ‘c’, comparing chars
 State 3: (accepting): move only after all chars

read and stack empty

Pushdown Automata

 Let’s look at an example:
 L = { xcxr | x ∈ { a,b }* }

q0 q1 q2

a, z / a z

b, z / b z

b, a / ba

b, b / bb
a, b / ab

a, a / aa

c, z / z

c, a / a

c, b / b

λ, z / z

λ, a / a

λ, b / b

a, a / λ
b, b / λ

q3
λ, z / z

PDA Example
 Transition for abcba

 (q0, abcba, Z) a (q0, bcba, a)   // push a
                        a (q0, cba, ba)   // push b
                        a (q1, ba, ba)     // goto 1
                        a (q2, ba, ba)     // λ trans
                        a (q2, a, a)         // pop b
                        a (q2, λ, z)        // pop a
                        a (q3, λ, z)        // Accept!
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PDA Example

 Transition for abcb
 (q0, abcb, z) a (q0, bcb, a)   // push a
                      a (q0, cb, ba)   // push b
                      a (q1, b, ba)     // goto 1
                      a (q2, b, ba)     // ε trans
                      a (q2, λ, a)         // pop b

                      Nowhere to go    // Reject!

Pushdown Automata

 I bet you’re wondering if JFLAP can
handle PDAs!
 Yes, it can…
 Let’s take a look.

Pushdown Automata

 Let’s look at another example:
 L = { xxr | x ∈ { a,b }* }

 Basic idea for building a PDA
 Much like last example, except

 This time we don’t know when to start popping and
comparing

 Since PDAs are non-deterministic, this is not a
problem

Pushdown Automata
 Let’s look at another example:

 L = { xxr | x ∈ { a,b }* }

 The PDA will have 3 states
 State 0 (initial) : reading before the center of string
 State 1: read after center of string, comparing chars
 State 2 (accepting): after all chars read, stack should be

empty
 The machine can choose to go from state 0 to

state 1 at any time:
 Will result in many “wrong” set of moves
 All you need is one “right” set of moves for a string to be

accepted.

Pushdown Automata

 Let’s look at an example:
 L = { xxr | x ∈ { a,b }* }

q0 q1

a, z / a z

b, z / b z

b, a / ba

b, b / bb
a, b / ab

a, a / aa

λ, z / z

λ, a / a

λ, b / b

a, a / λ
b, b / λ

q2
λ, z / z

PDA Example
 Let’s see a bad transition set for abba

 (q0, abba,z) a (q0, bba, a)   // push a
                      a (q0, ba, ba)   // push b
                      a (q0, a, bba)   // push b
                      a (q1, a, bba)   // λ trans
                      Nowhere to go // Reject!
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PDA Example
 Let’s see a good transition set for abba

 (q0, abba, z) a (q0, bba, a)   // push a
                      a (q0, ba, ba)   // push b
                      a (q1, ba, ba)   // ε trans
                      a (q1, a, a)       // pop b
                      a (q1, λ, Z)      // pop a
                      a (q2, λ, Z)      // Accept!

Pushdown Automata

 “Let’s go to the video tape”
 Actually JFLAP…

Pushdown Automata
 Strings accepted by a PDA by Final State

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, β)
 End in an accepting state (q ∈F)
 All characters of x have been read
 Some string on the stack (doesn’t matter what).

Pushdown Automata

 Strings accepted by a PDA (Final State)
 Let M = (Q, Σ, Γ , δ, q0, z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, β)

 Where
 q ∈A
 β ∈ Γ*

Pushdown Automata
 Strings accepted by a PDA by Empty Stack

 Start at (q0, x, z)
 Start state q0

 X on the input tape
 Empty stack

 End with (q, λ, λ)
 End in any state
 All characters of x have been read
 Stack is empty

Pushdown Automata

 Strings accepted by a PDA (Empty
Stack)
 Let M = (Q, Σ, Γ , δ, q0, z, F)  be a PDA
 x  is accepted by M if

 (q0, x, z) a* (q, λ, λ)

 Where
 q ∈Q
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Pushdown Automata
 The language accepted by a PDA

 Let M = (Q, Σ, Γ, q0, z, F, δ)  be a PDA
 The language accepted by M by final state,

 Denoted L(M) is
 The set of all strings x that are accepted by M by final

state

 The language accepted by M by empty stack,
 Denoted N(M) is
 The set of all strings x that are accepted by M by empty

stack
 We will show that all languages accepted by a PDA by final state

will be accepted by an equivalent PDA by empty stack and visa
versa

Final State vs. Empty Stack

 The two means by which a PDA can
accept are equivalent wrt the class of
languages accepted
 Given a PDA M such that L = L(M), there

exists a PDA M’ such that L = N(M’)
 Given a PDA M such that L = N(M), there

exists a PDA M’ such that L = L(M’)

Final State → Empty Stack

 Final State → Empty Stack
 Given a PDA PF = (Q, Σ, Γ ,δF, q0, z ,F)

and L = L (PF) then there exists a PDA PN
such that L = N (PN)

 We will build such a PDA

Accept by Empty Stack

 Final State → Empty Stack
 Basic idea

 Transitions of PN will mimic those of PF

 Create a new state in PN that will empty the
stack.

 The machine can move into this new state
whenever the machine is in an accepting state
of PF

Accept by Empty Stack
 Final State → Empty Stack

 We must be careful though
 PF may crash when the stack is empty.
 In those cases we need to assure that PN does not

accept
 To solve this:

 Create a new empty stack symbol X0 which is placed on
the stack before PF s empty stack marker (z)

 z will only be popped by the new “stack emptying state

 The first move of PN will be to place zX0 on PN stack.

Final State → Empty Stack

 Final State → Empty Stack
 PN = (

 Q ∪ {po, p},
 Σ,
 Γ ∪ {X0}
 δN

 p0,
 X0)
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Accept by Empty Stack

 Final State → Empty Stack

Empty Stack → Final State

 Empty Stack → Final State
 Given a PDA PN = (Q, Σ, Γ ,δN, q0, Z0)  and

L = N (PN) then there exists a PDA PF such
that L = L (PF)

 We will build such a PDA
 Actually, you will…Exercise 17

Reality Check
 Pushdown Automata

 NFAs with a stack
 Move depends on tape symbol, state, and top of

stack.
 Move involves popping stack, moving to new state

and pushing onto stack
 Basic PDA is nod-deterministic.

 Accept by final state
 Accept by empty stack

Next time

 PDAs…the perfect machine for CFLs…

 Questions?


