

Pushdown Automata

- A pushdown automata (PDA) is essentially:
- An NFA with a stack
- A "move" of a PDA will depend upon
- Current state of the machine
- Current symbol being read in
- Current symbol popped off the top of the stack
- With each "move", the machine can
- Move into a new state
- Push symbols on to the stack

Pushdown Automata

- The stack
- The stack has its own alphabet
- Included in this alphabet is a special symbol used to indicate an empty stack. (z)
- Note that the basic PDA is nondeterministic!

Pushdown Automata

- Formally:
- $\delta: Q \times(\Sigma \cup\{\lambda\}) \times \Gamma \rightarrow$ (finite subsets of $\left.Q \times \Gamma^{*}\right)$
- Domain:
- Q = state
- ($\Sigma \cup\{\lambda\})=$ symbol read off tape
- $\Gamma=$ symbol popped off stack
- Range

Q = new state

- $\Gamma^{*}=$ symbols pushed onto the stack

Pushdown Automata

- Example:
- $\delta(q, a, a)=(p, a a)$
- Meaning:

When in state q

- Reading in an a from the tape
- With an a popped off the stack
- The machine will
- Go into state p
- Push the string "aa" onto the stack

Pushdown Automata

- Configuration of a PDA
- Gives the current "configuration" of the machine
- (p, x, α) where
- p is the current state
- x is a string indicating what remains to be read on the tape
- α is the current contents of the stack.

Pushdown Automata

- Move of a PDA:
- We can describe a single move of a PDA:
- $(q, x, \alpha) \mapsto(p, y, \beta)$
- If:
$\mathrm{X}=\mathrm{ay}, \alpha=\gamma \mathrm{X}, \beta=\mathrm{YX}$
- And
$=\delta(q, x, \gamma)$ includes (p, Y) or
- $\delta(q, \varepsilon, \gamma)$ includes (p, Y) and $x=y$.

Pushdown Automata

- Strings accepted by a PDA by Final State
- Start at ($\left.q_{0}, x, z\right)$
- Start state q_{0}
- X on the input tape
- Empty stack
- End with (q, λ, β)
- End in an accepting state ($q \in F$)
- All characters of x have been read
- Some string on the stack (doesn't matter what).

Pushdown Automata

- The language accepted by a PDA - Let $M=\left(Q, \Sigma, \Gamma, q_{0}, z, F, \delta\right)$ be a PDA
- The language accepted by M by final state, - Denoted $\mathrm{L}(\mathrm{M})$ is
- The set of all strings x that are accepted by M by final state

Pushdown Automata

- Let's look at an example:

$$
L=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}
$$

Pushdown Automata

- Let's look at an example:
- $L=\left\{x c x^{r} \mid x \in\{a, b\}^{*}\right\}$
- The PDA will have 4 states
- State 0 (initial) : reading before the ' c '
- State 1: read the ' c '
- State 2 :read after 'c', comparing chars
- State 3: (accepting): move only after all chars read and stack empty

Transition for abcba

- (q_{0}, abcba, $\left.Z\right) \mapsto\left(q_{0}, b c b a, ~ a\right) ~ / / ~ p u s h ~ a ~$
- $\quad \mapsto\left(q_{0}\right.$, cba, ba) $/ /$ push b
- $\quad \mapsto\left(q_{1}, b a, b a\right) \quad / /$ goto 1
- $\quad \mapsto\left(q_{2}, b a, b a\right) \quad / / \lambda$ trans
- $\quad \mapsto\left(q_{2}, a, a\right) \quad / /$ pop b
- $\quad \mapsto\left(q_{2}, \lambda, z\right) \quad / /$ pop a
- $\quad \mapsto\left(q_{3}, \lambda, z\right) \quad / /$ Accept!

Pushdown Automata

- Let's look at another example:
- $L=\left\{x x^{r} \mid x \in\{a, b\}^{*}\right\}$
- The PDA will have 3 states
- State 0 (initial) : reading before the center of string
- State 1: read after center of string, comparing chars
- State 2 (accepting): after all chars read, stack should be empty
- The machine can choose to go from state 0 to state 1 at any time:
- Will result in many "wrong" set of moves
- All you need is one "right" set of moves for a string to be accepted.

PDA Example

- Let's see a good transition set for abba - (q_{0}, abba, z$) \mapsto\left(\mathrm{q}_{0}\right.$, bba, a) // push a
- $\quad \mapsto\left(q_{0}, b a, b a\right) / /$ push b
- $\quad \mapsto\left(q_{1}, b a, b a\right) / / \varepsilon$ trans
- $\quad \mapsto\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{a}\right) \quad / /$ pop b
- $\quad \mapsto\left(q_{1}, \lambda, z\right) \quad / /$ рор а
- $\quad \mapsto\left(q_{2}, \lambda, z\right) \quad / /$ Accept!

Pushdown Automata

- Strings accepted by a PDA (Final State)
- Let $M=\left(Q, \Sigma, \Gamma, \delta, q_{0}, z, F\right)$ be a PDA
- x is accepted by M if
$=\left(q_{0}, x, z\right) \mapsto(q, \lambda, \beta)$
- Where
- $q \in A$
$-\beta \in \Gamma^{*}$

Pushdown Automata

- The language accepted by a PDA
- Let $M=\left(Q, \Sigma, \Gamma, q_{0}, z, F, \delta\right)$ be a PDA
- The language accepted by M by final state, - Denoted $L(M)$ is
- The set of all strings x that are accepted by M by final state
- The language accepted by M by empty stack, - Denoted $N(M)$ is
- The set of all strings x that are accepted by M by empty stack
- We will show that all languages accepted by a PDA by final state will be accepted by an equivalent PDA by empty stack and visa versa

Final State \rightarrow Empty Stack

- Final State \rightarrow Empty Stack
- Given a PDA $P_{F}=\left(Q, \Sigma, \Gamma, \delta_{F}, q_{0}, z, F\right)$ and $L=L\left(P_{F}\right)$ then there exists a PDA P_{N} such that $L=N\left(P_{N}\right)$
- We will build such a PDA

Accept by Empty Stack

- Final State \rightarrow Empty Stack - Basic idea
- Transitions of P_{N} will mimic those of P_{F}
- Create a new state in P_{N} that will empty the stack.
- The machine can move into this new state whenever the machine is in an accepting state of P_{F}

Final State vs. Empty Stack

- The two means by which a PDA can accept are equivalent wrt the class of languages accepted
- Given a PDA M such that $L=L(M)$, there exists a PDA M' such that $L=N\left(M^{\prime}\right)$
- Given a PDA M such that $L=N(M)$, there exists a PDA M^{\prime} such that $L=L\left(M^{\prime}\right)$

Accept by Empty Stack

- Final State \rightarrow Empty Stack
- We must be careful though
- P_{F} may crash when the stack is empty.
- In those cases we need to assure that P_{N} does not accept
- To solve this:
Create a new empty stack symbol X_{0} which is placed on the stack before $P_{F} s$ empty stack marker (z)
z will only be popped by the new "stack emptying state

$$
\text { - The first move of } \mathrm{P}_{\mathrm{N}} \text { will be to place } \mathrm{zX}_{0} \text { on } \mathrm{P}_{\mathrm{N}} \text { stack. }
$$

Final State \rightarrow Empty Stack

- Final State \rightarrow Empty Stack
- $\mathrm{P}_{\mathrm{N}}=($
- $Q \cup\left\{p_{0}, p\right\}$,
- Σ,
- $\Gamma \cup\left\{\mathrm{X}_{0}\right\}$
- δ_{N}
- p_{0}
- X_{0})

