* Pushdown Automata

i Pushdown Automata

= A pushdown automata (PDA) is essentially:
= An NFA with a stack
= A“move” of a PDA will depend upon
= Current state of the machine
= Current symbol being read in
= Current symbol popped off the top of the stack
= With each “move”, the machine can
= Move into a new state
= Push symbols on to the stack

i Pushdown Automata

Input tape

State machine

Stack

i Pushdown Automata

= The stack
= The stack has its own alphabet
= Included in this alphabet is a special
symbol used to indicate an empty stack.
(2)
= Note that the basic PDA is non-
deterministic!

i Pushdown Automata

= Let's formalize this:

= A pushdown automata (PDA) is a 7-tuple:
«M=(QZT,y9, qy z F) where
Q = finite set of states
3 = tape alphabet
T’ = stack alphabet (may have symbols in common w/ =)
q, € Q = start state
z€ T = initial stack symbol
F C Q = set of accepting states
& = transition function

i Pushdown Automata

= About this transition function §:

= During a move of a PDA:
= At most one character is read from the input tape
A transitions are okay
= The topmost character is popped from the stack
= The machine will move to a new state based on:
The character read from the tape
The character popped off the stack
The current state of the machine
= 0 or more symbols from the stack alphabet are pushed
onto the stack.

i Pushdown Automata

= Formally:
= 8: Qx (£ U{A}) x T — (finite subsets of Q x ')

= Domain:
= Q = state
= (2 U {A}) = symbol read off tape
= ' = symbol popped off stack
= Range
= Q = new state
« I = symbols pushed onto the stack

i Pushdown Automata

= Example:

=8(q,a,a)=(p, aa)

= Meaning:
When in state q,
Reading in an a from the tape
With an a popped off the stack

« The machine will
Go into state p
Push the string “aa” onto the stack

Pushdown Automata

= Configuration of a PDA

= Gives the current “configuration” of the
machine

= (p, X, o) where
« p is the current state
» X is a string indicating what remains to be read
on the tape
= a is the current contents of the stack.

i Pushdown Automata

= Move of a PDA:

= We can describe a single move of a PDA:
= (a, X, @) =(p, ¥, B)
« If:
x =ay, o =X, p =YX
And
5 (q, X, y) includes (p, Y) or
5(q, ¢ v) includes (p, Y) and x =y.

i Pushdown Automata

= Moves of a PDA
= We can write:
= (A %) (P, Y, B)

« If

You can get from one configuration to the other by
applying 0 or more moves.

i Pushdown Automata

= Strings accepted by a PDA by Final State
= Start at (qy, X, 2)
= Start state q,
= X on the input tape
= Empty stack
= End with (q, A, B)
= End in an accepting state (q €F)
= All characters of x have been read
= Some string on the stack (doesn’t matter what).

i Pushdown Automata

= Strings accepted by a PDA (Final State)
« letM=(Q, %, T,39,q,z F) beaPDA

= X is accepted by M if
- (qOI X, Z) Q (q/)\'l ﬁ)

= Where
qeEF
per”

i Pushdown Automata

= The language accepted by a PDA
« LletM=(Q, %, T, qy 2z F,3) beaPDA
= The language accepted by M by final state,
» Denoted L(M) is

= The set of all strings x that are accepted by M
by final state

i Pushdown Automata

= Let’s look at an example:
s L={xex | xe{ab}*}

= Basic idea for building a PDA
= Read chars off the tape until you reach the ‘c’.
= As you read chars push them on the stack
= After reading the c, match the chars read with the chars
popped off the stack until all chars are read
= If at any point the char read does not match the char
popped, the machine “crashes”

Pushdown Automata

= Let’s look at an example:
sLl={xx|xe{ab}}

= The PDA will have 4 states
» State O (initial) : reading before the ‘c’
» State 1: read the 'c’
« State 2 :read after ‘c’, comparing chars

» State 3: (accepting): move only after all chars
read and stack empty

i Pushdown Automata

= Let’s look at an example:
sl={xx|xe{ab}}

b,b/h
bz/bz czlz Mzlz walk
azlaz c,ala Aala
. eb/b q\hb/b @ @
'\‘J Nzlz
b,b/bb,
a,b/ab

ba/ba »alaa

i PDA Example

= Transition for abcba
= (qo, abcba, Z) +(q,, bcba, a) // push a

. +Xq,, cba, ba) // push b
. +Xq,, ba, ba) // goto 1
. +Xq,, ba, ba) //» trans
- 'ﬁ(qZI a, a) // pop b
. Ay, +, 2) /] pop a

. (a3, », 2) // Accept!

i PDA Example

= Transition for abcb
= (qu abel Z) 'ﬁ(qu beI a) // pUSh a

. +x(qo, cb, ba) // push b
. —(q;, b, ba) // goto 1
. +q,, b, ba) // e trans
. {0y, 2, @) // pop b
. Nowhere to go // Reject!

i Pushdown Automata

= I bet you're wondering if JFLAP can
handle PDAs!
= Yes, it can...
= Let’s take a look.

i Pushdown Automata

= Let’s look at another example:
sL={xxr|xe{ab}}

= Basic idea for building a PDA

= Much like last example, except
This time we don’t know when to start popping and
comparing
Since PDAs are non-deterministic, this is not a
problem

Pushdown Automata

= Let’s look at another example:
s L={xx|xe{ab}}

= The PDA will have 3 states
= State O (initial) : reading before the center of string
= State 1: read after center of string, comparing chars
= State 2 (accepting): after all chars read, stack should be
empty
= The machine can choose to go from state 0 to
state 1 at any time:
= Will result in many “wrong” set of moves

= All you need is one “right” set of moves for a string to be
accepted.

i Pushdown Automata

= Let’s look at an example:
sL={xxr|xe{ab}}

b,b/A

b,z/b: 2/ 2
zibz hzlz aalh

a,z/az Mala
> -0 @
1 hzlz

b, b/bb,
b.a/ba ®alaa

a,b/ab

i PDA Example

= Let’s see a bad transition set for abba
= (go, abba,z) —q,, bba, a) // pusha

. +(q,, ba, ba) // push b
. +{(do, @, bba) // push b
. +{(qy, a, bba) // A trans
. Nowhere to go // Reject!

i PDA Example

= Let’s see a good transition set for abba
= (qy, abba, z) —x(qy, bba, a) // push a
. +(q,, ba, ba) // push b
+{(qy, ba, ba) // e trans
}ﬁ(qll a, a) // pop b
=y, M 2Z) //popa
0y, A, Z) /] Accept!

i Pushdown Automata

= "Let’s go to the video tape”
= Actually JFLAP...

i Pushdown Automata

= Strings accepted by a PDA by Final State
= Start at (qy, X, z)
= Start state q,
= X on the input tape
= Empty stack
= End with (q, », B)
= End in an accepting state (q €F)
= All characters of x have been read
= Some string on the stack (doesn’t matter what).

i Pushdown Automata

= Strings accepted by a PDA (Final State)
« letM=(Q, X, T,39,q, 2z F) beaPDA

= X is accepted by M if
- (qOI X, Z) Q (q/ Ay |3)

= Where
qeA
per”

i Pushdown Automata

= Strings accepted by a PDA by Empty Stack
= Start at (qy, X, z)
= Start state q,
= X on the input tape
= Empty stack
= End with (g, », %)
= End in any state
= All characters of x have been read
= Stack is empty

i Pushdown Automata

= Strings accepted by a PDA (Empty
Stack)
« letM=(Q, =, T,39,qy 2z F) beaPDA
= X is accepted by M if
= (Gor X, Z) F5(G, 2, 2)

= Where
qeQ

i Pushdown Automata

= The language accepted by a PDA
« LetM=(Q, %, T,q,zF 3 beaPDA
= The language accepted by M by final state,
= Denoted L(M) is
= The set of all strings x that are accepted by M by final
state
= The language accepted by M by empty stack,
= Denoted N(M) is
= The set of all strings x that are accepted by M by empty
stack
= We will show that all languages accepted by a PDA by final state

will be accepted by an equivalent PDA by empty stack and visa
versa

i Final State vs. Empty Stack

= The two means by which a PDA can
accept are equivalent wrt the class of
languages accepted
= Given a PDA M such that L = L(M), there
exists a PDA M’ such that L = N(M")
= Given a PDA M such that L = N(M), there
exists a PDA M’ such that L = L(M’)

Final State — Empty Stack

= Final State — Empty Stack
= Givena PDA P = (Q, %, T ,0¢ 4y, 2 ,F)
and L = L (Pg) then there exists a PDA P,
such thatL = N (Py)

= We will build such a PDA

i Accept by Empty Stack

= Final State — Empty Stack

= Basic idea
= Transitions of Py will mimic those of P:
= Create a new state in Py that will empty the
stack.

= The machine can move into this new state
whenever the machine is in an accepting state
of Px

i Accept by Empty Stack

= Final State — Empty Stack

= We must be careful though
= P: may crash when the stack is empty.
= In those cases we need to assure that Py does not
accept

= To solve this:
Create a new empty stack symbol X, which is placed on
the stack_before P s empty stack marker (z)
z will only be popped by the new “stack emptying state

= The first move of Py will be to place zX, on Py stack.

i Final State — Empty Stack

= Final State — Empty Stack
] PN = (
- Q U {por p}r
.3,
- T U {Xg}
- Oy
- pOl
= Xp)

i Accept by Empty Stack i Empty Stack — Final State

= Final State — Empty Stack = Empty Stack — Final State

= Given a PDA Py = (Q, £, T ,dy, 9o, Z,) and
L = N (Py) then there exists a PDA P; such
thatL = L (Pg)

= We will build such a PDA
= Actually, you will...Exercise 17

i Reality Check i Next time

= Pushdown Automata = PDAs...the perfect machine for CFLs...
= NFAs with a stack

= Move depends on tape symbol, state, and top of
stack.

Move involves popping stack, moving to new state .
and pushing onto stack = Questions?

Basic PDA is nod-deterministic.

Accept by final state
Accept by empty stack

