Context Free Languages

PDAs and CFLs

Before We Start

• Any questions?

Languages

- Recall.
 - What is a language?
 - What is a class of languages?

Context Free Languages

- Context Free Languages(CFL) is the next class of languages outside of Regular Languages:
 - Means for defining: Context Free Grammar
 - Machine for accepting: Pushdown Automata

Context Free Grammars

- Let's formalize this a bit:
 - A context free grammar (CFG) is a 4-tuple: (V,
 - T, S, P) where
 - V is a set of variables
 - T is a set of terminals
 - V and Σ are disjoint (I.e. V $\cap \Sigma = \emptyset$)
 - + S \in V, is your start symbol

Plan for today

- Show that PDAs and CFGs are equivalent.
- Questions?

Equivalence of CFG and PDA

- Given a CFG, G, construct a PDA M, such that L(M) = L(G)
- 2. Given a PDA, M, define a CGF, G such that L(G) = L(M)

Step 1: CFG \rightarrow PDA

- Given: A context free grammar G
- · Construct: A pushdown automata M
- Such that:
 - Language generated by G is the same as
 - Language accepted by M.

Step 1: CFG \rightarrow PDA

- Basic idea
 - Use the stack of the PDA to simulate the derivation of a string in the grammar.
 - Push S (start variable of G) on the stack
 - From this point on, there are two moves the PDA can make:
 - 1. If a variable A is on the top of the stack, pop it and push the right-hand side of a production $A\to\beta$ from G.
 - If a terminal, a is on the top of the stack, pop it and match it with whatever symbol is being read from the tape.

Step 1: CFG \rightarrow PDA

- Observations:
 - There can be many productions that have a given variable on the left hand side:
 - $\bullet \,\, S \rightarrow \epsilon \,|\, 0S1 \,|\, 1S0$
 - In these cases, the PDA must "choose" which string to push onto the stack after pushing a variable.
 - I.e. the PDA being constructed in non-deterministic.

Step 1: CFG \rightarrow PDA

- More observations:
 - A string will only be accepted if:
 - After a string is completely read
 - · The stack is empty

Step 1: CFG \rightarrow PDA

- · Let's formalize this:
 - Let G = (V, T, S, P) be a context free grammar.
 - We define a pushdown automata
 - $M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$
 - Such that
 - L(M) = L(G)

Step 1: CFG \rightarrow PDA

- Define M as follows:
 - $-Q = \{ q_0, q_1, q_2 \}$
 - q_o will be the start state
 - q1 will be where all the work gets done
 - q₂ will be the accepting state

$$-\Gamma = \mathbf{V} \cup \Sigma \cup \{ \mathbf{Z}_0 \} \qquad \mathbf{Z}_0 \notin (\mathbf{V} \cup \Sigma)$$
$$-\mathbf{A} = \{ \mathbf{q}_2 \}$$

Step 1: CFG \rightarrow PDA

- Transition function δ is defined as follows:
 - $-\delta(q_0, \varepsilon, Z_o) = \{ (q_1, SZ_o) \}$
 - To start things off, push S onto the stack and immediately go into state 1
 - $\delta (q_1, \epsilon, A) = \{ (q_1, \alpha) | A \to \alpha \text{ is a production} \\ of G \} \text{ for all variables } A$
 - Pop and replace variable.

Step 1: CFG \rightarrow PDA

- Transition function δ is defined as follows:
 - $\delta (q_{1,} a, a) = \{ (q_{1}, \epsilon) \}$ for all terminals a • Pop and match terminal.
 - $-\delta(q_1, \varepsilon, Z_0) = \{ (q_2, Z_0) \}$
 - After all reading is done, accept only if stack is empty.
 - No other transitions exist for M

Step 1: CFG \rightarrow PDA

• Example: $-M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$

$$-\Omega = \{a, a, a, s\}$$

$$-\Sigma = \{ a, b \}$$

- $-\Gamma = \{ a, b, S, Z_0 \}$
- $-\,F = \{\;q_2\,\}$

Step 1: CFG \rightarrow PDA

State	Tape input	Stack	Move(s)
q ₁	з	S	(q ₁ , a)
			(q_1, a) (q_1, b) (q_1, aSa) (q_1, bSb)
			(q_1, aSa)
			(q ₁ , bSb)
q_1	a	a	(q ₁ , ε)
q ₁	b	b	(q ₁ , ε)

Step 1: CFG \rightarrow PDA				
• Let's run M c	on abbba			
$-(q_0, abbba, Z$	$Z \mapsto (q_1, abbba, SZ)$			
_	\mapsto (q ₁ , abbba, aSaZ)	// push		
-	\mapsto (q ₁ , bbba, SaZ)	// match		
-	\mapsto (q ₁ , bbba, bSbaZ)	// push		
-	\mapsto (q ₁ , bba, SbaZ)	// match		
-	\mapsto (q ₁ , bba, bbaZ)	// push		
-	\mapsto (q ₁ , ba, baZ)	// match		
-	\mapsto (q ₁ , a, aZ)	// match		
-	$\mapsto (q_1, \epsilon, Z)$	// match		
-	$\mapsto (q_2, \epsilon, Z \)$	// accept		

Step 1: CFG \rightarrow PDA

• Questions?

Step 2: PDA \rightarrow CFG

- Given: A pushdown automata M
- Define: A context free grammar G
- Such that:
 - Language accepted by M is the same as
 - Language generated by G

Pushdown Automata

- Strings accepted by a PDA by Final State
 - Start at (q_0, x, Z_0)
 - Start state q₀
 - X on the input tape
 - Empty stack
 End with (q, ε, β)
 - End in an accepting state (q ∈ F)
 - All characters of x have been read
 - Some string on the stack (doesn't matter what).

Pushdown Automata

- Strings accepted by a PDA by Empty Stack
 - Start at (q_0, x, Z_0)
 - + Start state q_0
 - X on the input tape
 - Empty stack
 - End with $(q,\,\epsilon,\,\epsilon)$
 - End in <u>any</u> state
 - All characters of x have been read
 - · Stack is empty

Final State vs. Empty Stack

- The two means by which a PDA can accept are equivalent wrt the class of languages accepted
 - Given a PDA M such that L = L(M), there exists a PDA M' such that L = N(M')
 - Given a PDA M such that L = N(M), there exists a PDA M' such that L = L(M')

Final State \rightarrow Empty Stack

- Final State \rightarrow Empty Stack
 - Given a PDA $P_F = (Q, \Sigma, \Gamma, \delta_F, q_0, Z_0, F)$ and $L = L (P_F)$ then there exists a PDA P_N such that $L = N (P_N)$
 - We will build such a PDA

Accept by Empty Stack

- Final State \rightarrow Empty Stack
 - Basic idea
 - Transitions of P_N will mimic those of P_F
 - Create a new state in P_N that will empty the stack.
 - The machine can move into this new state whenever the machine is in an accepting state of $P_{\rm F}$

Accept by Empty Stack

• Final State \rightarrow Empty Stack

Empty Stack \rightarrow Final State

- Must show:
 - A string x is accepted by $P_{\rm N}$ (by empty stack) iff it is accepted by $P_{\rm F}$ (by final state)
 - If x is accepted by P_N (empty stack) then it is accepted by P_F (final state)
 - If x accepted by P_F (final state) then it is accepted by P_N (empty stack)

Final State vs. Empty Stack

- We showed: Final State → Empty Stack.
 Given a PDA that accepts by final state, we can build a PDA that accepts by empty stack
- the inverse can be shown: Empty Stack → Final State
 Given a PDA that accepts by empty stack, we can build a PDA that accepts by final state.
- Showing that PDAs that accept by empty stack and PDAs that accept by final state are equivalent.

Questions?

Step 2: PDA \rightarrow CFG

- Given: A pushdown automata M that accepts by <u>empty stack</u>
- Define: A context free grammar G
- Such that:
 - Language accepted by M is the same as
 - Language generated by G

Step 2: PDA \rightarrow CFG

- Basic idea
 - We define variables in G to be triplets:
 - [p, A, q] will represent a variable, that can generate all strings x that:
 - Upon reading x on the PDA tape will
 - Take you from state p to state q in the PDA and
 - Have a "net result" of popping A off the stack
 - In essence, A is "eventually" replaced by x
 - Note that it may take many moves to get there.

Step 2: PDA \rightarrow CFG

- · Productions of G
 - 1. For all states p in M, add the production
 - $S \rightarrow [q_0 Z_0 q]$
 - Following these productions will generate all strings that start at q_{o} , and result in an empty stack. Final state is not important.
 - In other words, all strings accepted by M.

Step 2: PDA \rightarrow CFG

- More Productions of G
 - 2. For every $q,\,q_1\in Q,\,a\in\!\!\Sigma\!\cup\!\{\epsilon\}$ and $A\in\!\Gamma$
 - If δ (q, a, A) contains (q_1, ϵ) then add $\label{eq:q_1} [qAq_1] \rightarrow a$
 - Meaning you can get from q to q₁ while popping A from the stack by reading an a.

Step 2: PDA \rightarrow CFG

- One can show by induction (though we won't) that
 - $\ [qAp] \Rightarrow^* x \ iff (q, x, A) \mapsto^* (p, \epsilon, \epsilon)$
 - More specifically $[q_0Z_0p]\Rightarrow^*x$ and since we added the productions $S\to [q_0Z_0p]$ for all p, then $x\in L(G)$
 - On the flip side $S \to [q_0 Z_0 p]$ will always be the first production of any derivation of G
 - $(q_0, x, Z_0) \mapsto^* (p, \epsilon, \epsilon)$
 - · So x is accepted by empty stack
 - $x \in L(M)$

Step 2: PDA \rightarrow CFG • Example $-M = (Q, \Sigma, \Gamma, \delta, q_0, Z_0, F)$ $-Q = \{q_0, q_1\}$ $-\Sigma = \{0, 1\}$ $-\Gamma = \{X, Z\}$ $-Z_0 = Z$ $-F = \emptyset$

Step 2: PDA \rightarrow CFG

Corresponding CFG

- Type 2 productions

- $-\left[q_{0}\mathrm{X}q_{1}\right]\rightarrow1$
- $-\left[q_{1}Xq_{1}\right] \rightarrow 1$
- $-\left[q_{1}Xq_{1}\right] \rightarrow \varepsilon$
- $-\left[q_{1}Zq_{1}\right]\rightarrow\epsilon$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
 - Type 3 productions
 - Transitions to consider:
 - $\delta(q_0, 0, Z) = (q_0, XZ)$
 - $\delta(q_0, 0, X) = (q_0, XX)$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
 - Type 3 productions
 - $\delta(q_0, 0, X) = (q_0, XX)$
 - Add productions
 - $[q_0Xq_0] \rightarrow 0[q_0Xq_0][q_0Xq_0]$
 - $[q_0Xq_0] \rightarrow 0[q_0Xq_1][q_1Xq_0]$
 - $[q_0Xq_1] \rightarrow 0[q_0Xq_0][q_0Xq_1]$
 - $[q_0Xq_1] \rightarrow 0[q_0Xq_1][q_1Xq_1]$

- · Corresponding CFG
 - Type 3 productions
 - $\delta(q_0, 0, Z) = (q_0, XZ)$
 - Add productions
 - $[q_0Zq_0] \rightarrow 0[q_0Xq_0][q_0Zq_0]$
 - $[q_0Zq_0] \rightarrow 0[q_0Xq_1][q_1Zq_0]$
 - $[q_0Zq_1] \rightarrow 0[q_0Xq_0][q_0Zq_1]$
 - $[q_0Zq_1] \rightarrow 0[q_0Xq_1][q_1Zq_1]$

Step 2: PDA \rightarrow CFG

- Complete grammar $G = (V, \Sigma, S, P)$
- V = {

$-S$, $[q_0Xq_0]$, $[q_0Zq_0]$,
----------------------------------	---

- $\qquad [q_0 X q_1]\,, \qquad [q_0 Z q_1],$
- $\qquad [q_1 X q_0] \,, \qquad [q_1 Z q_0],$
- $\qquad [q_1 X q_1], \qquad [q_1 Z q_1],$
- $[q_1Xq_1]$

- }

Step 2: PDA \rightarrow CFG					
• P =					
$ \begin{tabular}{lllllllllllllllllllllllllllllllllll$	$ \begin{split} & [q_0 X q_0] \rightarrow 0 [q_0 X q_0] [q_0 X q_0] \ (7) \\ & [q_0 X q_0] \rightarrow 0 [q_0 X q_1] [q_1 X q_0] \ (8) \\ & [q_0 X q_1] \rightarrow 0 [q_0 X q_0] [q_0 X q_1] \ (9) \\ & [q_0 X q_1] \rightarrow 0 [q_0 X q_1] [q_1 X q_1] \ (10) \\ & [q_0 Z q_0] \rightarrow 0 [q_0 X q_0] [q_0 Z q_0] \ (11) \\ & [q_0 Z q_0] \rightarrow 0 [q_0 X q_0] [q_0 Z q_1] \ (12) \\ & [q_0 Z q_1] \rightarrow 0 [q_0 X q_0] [q_0 Z q_1] \ (13) \\ & [q_0 Z q_1] \rightarrow 0 [q_0 X q_1] [q_1 Z q_1] \ (14) \end{split} $				

Step 2: PDA \rightarrow CFG

• Let's try a derivation for 00011	
$- S \rightarrow \underline{[q_0 Z q_1]}$	// P1
$\rightarrow 0 [\underline{q}_{0} \underline{X} \underline{q}_{1}] [q_{1} Z q_{1}]$	// P14
$\rightarrow 00 \ \underline{[q_0 X q_1]} \ [q_1 X q_1] \ [q_1 Z q_1]$	// P10
$\rightarrow 000 \underline{[q_0 X q_1]} [q_1 X q_1] [q_1 X q_1] [q_1$	Zq ₁] // P10
$\rightarrow 0001 \underline{[q_1 X q_1]} [q_1 X q_1] [q_1 Z q_1]$	// P3
$\rightarrow 00011 \underline{[q_1 X q_1]} [q_1 Z q_1]$	// P4
$\rightarrow 00011 \epsilon \underline{[q_1 Z q_1]}$	// P5
$\rightarrow 00011 \epsilon \epsilon$	// P6

Summary

What have we learned?
 - (We really don't need to see the CFG corresponding to a PDA, do we?) ©

Summary

- What we have really learned?
 - Given a CFG, we can build a PDA that accepts the same language generated by the CFG
 - Given a PDA, we can define a CFG that can generate the language accepted by the PDA.
- Looking for a machine to accept CGLs?
 - The pushdown automata fits the bill!

Next time

- Closure Properties for CFLs
- Decision Algorithms for CFLs
- Just when you thought it was safe...
 The Pumping Lemma for CFLs