Context Free Languages

PDAs and CFLs

Before We Start

* Any questions?

Languages

* Recall.
— What is a language?
— What is a class of languages?

Context Free Languages

» Context Free Languages(CFL) is the next
class of languages outside of Regular
Languages:

— Means for defining: Context Free Grammar
— Machine for accepting: Pushdown Automata

Now our picture looks like

Regular Languages

Context Free Grammars

* Let’s formalize this a bit:
— A context free grammar (CFQ) is a 4-tuple: (V,
T, S, P) where
* V is a set of variables
* T is a set of terminals
* Vand X are disjoint (Le. VN X =)
* S €V, is your start symbol




Context Free Grammars

* Let’s formalize this a bit:
— Production rules

» Of the form A — 3 where
-AeV
—Be(VuUX)" string with symbols from V and X

* We say that y can be derived from o in one step:
— A—> Bisarule
—a=0,A 0,
-1=apa,
—a=7Y

Pushdown Automata

Input tape
1. 2 ]
\o 3
° @
State machine Stack

Pushdown Automata

e Let’s formalize this:

— A pushdown automata (PDA) is a 7-tuple:
*M=(Q, 2, T, qp Zy, A, 3) where
— Q = finite set of states
— X =tape alphabet
— T = stack alphabet (may have symbols in common w/ X)
— g, € Q = start state
— Z, € T = initial stack symbol
— A < Q = set of accepting states
— d = transition function

Pushdown Automata

* About this transition function d:
— During a move of a PDA:

+ At most one character is read from the input tape
— A transitions are okay
* The topmost character is popped from the stack
* The machine will move to a new state based on:
— The character read from the tape
— The character popped off the stack
— The current state of the machine

* 0 or more symbols from the stack alphabet are pushed onto the
stack.

Plan for today

» Show that PDAs and CFGs are equivalent.

* Questions?

Equivalence of CFG and PDA

1. Given a CFG, G, construct a PDA M, such
that L(M) = L(G)

2. Given a PDA, M, define a CGF, G such

that L(G) = L(M)




Step 1: CFG — PDA

» Given: A context free grammar G
* Construct: A pushdown automata M
* Such that:

— Language generated by G is the same as
— Language accepted by M.

Step 1: CFG — PDA

» Basicidea

— Use the stack of the PDA to simulate the
derivation of a string in the grammar.
» Push S (start variable of G) on the stack
*  From this point on, there are two moves the PDA
can make:

1. Ifa variable A is on the top of the stack, pop it and push
the right-hand side of a production A — B from G.

2. Ifaterminal, a is on the top of the stack, pop it and
match it with whatever symbol is being read from the
tape.

Step 1: CFG — PDA

» Observations:

— There can be many productions that have a
given variable on the left hand side:
«S—¢|0S1|1S0

— In these cases, the PDA must “choose” which

string to push onto the stack after pushing a
variable.

* Le. the PDA being constructed in non-deterministic.

Step 1: CFG — PDA

* More observations:

— A string will only be accepted if:
« After a string is completely read
* The stack is empty

Step 1: CFG — PDA

* Let’s formalize this:
—LetG=(V,T,S, P) be a context free grammar.
— We define a pushdown automata
*M=(Q %, T.8,qZ.F)
— Such that
* LM) =L(G)

Step 1: CFG — PDA

* Define M as follows:
-Q={dpd %}
* q, will be the start state
* ¢, will be where all the work gets done
* g, will be the accepting state
-I=vuXxu{z,} Z,g(Vul)
-A={q}




Step 1: CFG — PDA

» Transition function d is defined as follows:

-3 (qO’ €, Zo ) = { (ql’ SZO) }

* To start things off, push S onto the stack and
immediately go into state 1

-38(q;,8 A)=1{(q;,a) | A — aisaproduction
of G}  for all variables A

* Pop and replace variable.

Step 1: CFG — PDA

* Transition function 0 is defined as follows:
—~8(q;,a,a)={(q, &)} forall terminals a

* Pop and match terminal.

=8(a;1,8 Zy) =1 (A2 Zo) }

« After all reading is done, accept only if stack is
empty.

— No other transitions exist for M

Step 1: CFG — PDA

* Let’s look at an example:

— Remember the CFG for odd length
palindromes:

*S—>alb
*S—>aSa|bSb

— Let’s convert this to a PDA.

Step 1: CFG — PDA

» Example:
-M=(Q,%,T,3,qpZ,F)

-Q={dp 9,9}
-X={ab}
-T'={a,b,S,7Z,}
-F={q}

Step 1: CFG — PDA

.s,zo/sz0 . 6.2,/ 2,

Lots of moves

(see next slide)

Step 1: CFG — PDA

State Tape input | Stack Move(s)

q & S (q;, )
(q17 b)
(qb asa)
(q;, bSb)

q a (q15 8)

q b b (@, €)




Step 1: CFG — PDA

e Let’s run M on abbba

— (qq, abbba, Z) - (q, abbba, SZ)

- > (q,, abbba, aSaZ) // push
- — (q,, bbba, SaZ)  // match
- > (q,, bbba, bSbaZ) // push
- — (q,, bba, SbaZ) // match
- — (q;, bba, bbaZ) //push
- — (q,, ba, baZ) // match

- = (q;, 8, aZ) // match
- = (qy, & Z) // match
- = (Qy e Z) // accept

Step 1: CFG — PDA

* Questions?

Step 2: PDA — CFG

* Given: A pushdown automata M
* Define: A context free grammar G

* Such that:
— Language accepted by M is the same as
— Language generated by G

Pushdown Automata

« Strings accepted by a PDA by Final State
— Start at (qq, X, Z)
« Start state q,
» X on the input tape
» Empty stack
— End with (q, &, B)
» End in an accepting state (q €F)
« All characters of x have been read
* Some string on the stack (doesn’t matter what).

Pushdown Automata

» Strings accepted by a PDA by Empty Stack
— Start at (qq, X, Z)
« Start state q,
» X on the input tape
* Empty stack
— End with (q, €, €)
* End in any state
* All characters of x have been read
» Stack is empty

Final State vs. Empty Stack

* The two means by which a PDA can accept
are equivalent wrt the class of languages
accepted
— Given a PDA M such that L = L(M), there

exists a PDA M’ such that L = N(M”)

— Given a PDA M such that L = N(M), there
exists a PDA M’ such that L = L(M’)




Final State — Empty Stack

* Final State - Empty Stack

— Givena PDA P, =(Q, 2, T" 8, q¢, Z, ,F) and
L =L (Py) then there exists a PDA Py such that
L=N(Py)

— We will build such a PDA

Accept by Empty Stack

* Final State - Empty Stack

— Basic idea
* Transitions of Py will mimic those of Py
* Create a new state in Py that will empty the stack.

* The machine can move into this new state whenever
the machine is in an accepting state of P

Accept by Empty Stack

* Final State - Empty Stack
— We must be careful though

« Py may crash when the stack is empty.
« In those cases we need to assure that Py does not accept
* To solve this:

— Create a new empty stack symbol X, which is placed on the
stack before Py, s empty stack marker (Z)

— Z, will only be popped by the new “stack emptying state
« The first move of Py will be to place Z,X, on Py stack.

Accept by Empty Stack

* Final State - Empty Stack

€, any/ €

Empty Stack — Final State

* Must show:
— A string x is accepted by Py (by empty stack)
iff it is accepted by Py, (by final state)

— If x is accepted by Py (empty stack) then it is
accepted by Pj (final state)

— If x accepted by Py, (final state) then it is
accepted by Py (empty stack)

Accept by Empty Stack

* Final State - Empty Stack




Final State vs. Empty Stack

* We showed: Final State — Empty Stack.

— Given a PDA that accepts by final state, we can build a PDA that
accepts by empty stack

« the inverse can be shown: Empty Stack — Final State

— Given a PDA that accepts by empty stack, we can build a PDA that
accepts by final state.

» Showing that PDAs that accept by empty stack and PDAs
that accept by final state are equivalent.

Questions?

Step 2: PDA — CFG

» Given: A pushdown automata M that

accepts by empty stack
* Define: A context free grammar G

* Such that:
— Language accepted by M is the same as
— Language generated by G

Step 2: PDA — CFG

» Basic idea

— We define variables in G to be triplets:
* [p, A, q] will represent a variable, that can generate
all strings x that:
— Upon reading x on the PDA tape will
— Take you from state p to state q in the PDA and
— Have a “net result” of popping A off the stack

* In essence, A is “eventually” replaced by x
* Note that it may take many moves to get there.

Step 2: PDA — CFG

* Productions of G

1. For all states p in M, add the production
* S > [qpZal

— Following these productions will generate all strings that
start at q,, and result in an empty stack. Final state is not
important.

— In other words, all strings accepted by M.

Step 2: PDA — CFG

* More Productions of G

2.Foreveryq,q, € Q,a eXu{e} and A €T

» If 8 (q, a, A) contains (q;, €) then add
- [dAq ] —>a

* Meaning you can get from q to q, while popping A
from the stack by reading an a.

Step 2: PDA —» CBG™@

* Even More Productions of G

3.Foreveryq,q, € Q,a eXu{e} and A eI’
» If 5 (q, a, A) contains (q;, B,B,...B,)) then
« For every possible sequence of states g, ...q,,
+ Add
- [9Aq,,,] > a[q;B,9,] [4,B,a3] - [4,Bryme]

* Meaning:
— one way to pop A off the stack and to get from q to q,,,., is to

» read an a

» use some input to pop B, off the stack (bring you from q, to
q, in the process),

» While in g, use some input to pop B, off the stack
(bringing you to g5 in the process)

» Andsoon...




Step 2: PDA — CFG

* One can show by induction (though we won’t) that
- [qAp] =" x iff (g, x, A) =" (p, &, )

— More specifically [q,Z,p] =" x and since we added the
productions S — [qyZ,p] for all p, then x € L(G)
— On the flip side S — [q,Z,p] will always be the first
production of any derivation of G
* (g X, Zo) " (p, &, €)
« So x is accepted by empty stack
< x e L(M)

Step 2: PDA — CFG

» Example

L={01i]i=j=>1}
€X/€
1,X/€

1,X/€e €Z/€
0.2/XZ (_)
0,X /XX

Step 2: PDA — CFG

* Example
-M=(Q,%,T.5,qyZ.F)

-Q={qpq}
-X={0,1}
-T={X,Z}
-Zy=7
-F=g

Step 2: PDA — CFG

 Corresponding CFG
— Type 1 productions

=S —>[q¢Zq,]
=S = [q4Z4,]

Step 2: PDA — CFG

 Corresponding CFG
— Type 2 productions

qoXqi] —> 1
q,:Xq,] —> 1
- [ Xq]—>e
-[qZq;] > ¢

-
-

Step 2: PDA — CFG

* Corresponding CFG
— Type 3 productions
— Transitions to consider:

* 8(qp, 0,Z) = (qp, X2)
* 8(qp, 0, X) = (qp, XX)




Step 2: PDA — CFG

* Corresponding CFG

— Type 3 productions
*d (q07 05 X) = (q09 XX)

— Look for all sequences of states qyq,q.

Step 2: PDA — CFG

* Corresponding CFG

— Type 3 productions
* 3 (qo» 0, X) = (g, XX)

— Add productions
* [4oXde] = 0[q9Xqo][90X o]
* [4oXdqe] = 0[qXq,][q,Xqy]
* [4oXq,] = O[qpXdl[qeXa; ]
* [4oXq;] = 0[qXq,][q,Xq,]

— ¢, and q, can be either g, or q, a a
o o
il 9o
Yo 9
il il
Step 2: PDA — CFG
* Corresponding CFG
— Type 3 productions
* 8(dp, 0, 2) = (95 X2)
— Look for all sequences of states qyq,q.
— qp» g, can be either g, or q, d; q.
Yo Yo
d 90
9o q
q q

Step 2: PDA — CFG

 Corresponding CFG

— Type 3 productions
* 8(qp, 0, Z) = (90> XZ)

— Add productions
* [20Zqo] = 0[qoXqo][90Zq,]
* [90Zq0] = 0[9oXq,1[9,Z4]
* [90Za,] = 0[qoXqol[90Zaq,]
* [90Zq,] = 0[qyXq,1[q,Zq,]

Step 2: PDA — CFG

* Complete grammar G = (V, X, S, P)
e V={
=S, [dXqo],  [90Zq0]
- [9Xq,],  [deZail,
- [0 Xqe],  [41Z40);
1, [aZq],
]

Step 2: PDA — CFG

« P=
* S—>[qZq,] (1) [9eXgo] = 0[qeXqol[deXqo] (7)
* S—>1[qZqel (2 [90Xqo] = 0[q,Xq;1[q,Xq,] (8)
s [qXq ] > 1 () [99Xq] = 0[qpXq,][qpXa,] (9)
* [aXql—>1 (4 [q,Xq,] = 0[qeXq,][q;Xq,] (10)
c[aXql—>e (5 [96Zao] = O[qeXqolldeZa,] (11)
s [@Zq,]—>¢e (6) [29Zqo] = O[qXq,][a;Zq,] (12)
[90Zq,] = 0[qoXqp][d¢Za,] (13)
[96Za;] = O[qeXq,1la;Zq;] (14)




Step 2: PDA — CFG

» Let’s try a derivation for 00011

Summary

* What have we learned?

— (We really don’t need to see the CFG
corresponding to a PDA, do we?) ©

- S —>[qyZq;] // P1
— 0[qoXq,][q,Zq;] // P14
— 00 [QQXJJ [q,Xq;] [9,Zq;] // P10
— 000 Lﬂg&l] [q,Xq,] [q,Xq,] [9,Zq,] // P10
— 0001 [q,Xq,] [q,Xq;] [q,Zq;] // P3
— 00011 [q,X q,]1[q,Zq,] // P4
— 00011 & [q,Zq,] // P5
—> 00011 ge // P6

Summary

* What we have really learned?

— Given a CFG, we can build a PDA that accepts
the same language generated by the CFG

— Given a PDA, we can define a CFG that can
generate the language accepted by the PDA.

* Looking for a machine to accept CGLs?
— The pushdown automata fits the bill!

Next time

* Closure Properties for CFLs
* Decision Algorithms for CFLs

+ Just when you thought it was safe...
— The Pumping Lemma for CFLs




