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Context Free Languages

PDAs and CFLs

Before We Start

• Any questions?

Languages

• Recall.
– What is a language?
– What is a class of languages?

Context Free Languages

• Context Free Languages(CFL) is the next 
class of languages outside of Regular 
Languages:
– Means for defining: Context Free Grammar
– Machine for accepting: Pushdown Automata

Now our picture looks like

Regular Languages

Finite 
Languages

Deterministic Context Free Languages

Context Free Languages

Context Free Grammars

• Let’s formalize this a bit:
– A context free grammar (CFG) is a 4-tuple: (V, 

T, S, P) where
• V is a set of variables
• T is a set of terminals
• V and Σ are disjoint (I.e. V ∩ Σ = ∅)
• S ∈V, is your start symbol
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Context Free Grammars

• Let’s formalize this a bit:
– Production rules

• Of the form A → β where
– A ∈V 
– β ∈ (V ∪ ∑)*    string with symbols from V and ∑

• We say that γ can be derived from α in one step:
– A → β is a rule
– α = α1A α2

– γ = α1 β α2

– α ⇒ γ

Pushdown Automata

Input tape

State machine

1 2

3

4
5

Stack

Pushdown Automata

• Let’s formalize this:
– A pushdown automata (PDA) is a 7-tuple: 

• M = (Q, Σ, Γ, q0, Z0, A, δ) where
– Q = finite set of states
– Σ = tape alphabet
– Γ = stack alphabet (may have symbols in common w/ Σ)
– q0 ∈Q = start state
– Z0 ∈ Γ = initial stack symbol
– A ⊆ Q = set of accepting states
– δ = transition function

Pushdown Automata

• About this transition function δ:
– During a move of a PDA:

• At most one character is read from the input tape
– Λ transitions are okay

• The topmost character is popped from the stack
• The machine will move to a new state based on:

– The character read from the tape
– The character popped off the stack
– The current state of the machine

• 0 or more symbols from the stack alphabet are pushed onto the 
stack.

Plan for today

• Show that PDAs and CFGs are equivalent.

• Questions?

Equivalence of CFG and PDA

1. Given a CFG, G, construct a PDA M, such 
that L(M) = L(G)

2. Given a PDA, M, define a CGF, G such 
that L(G) = L(M)
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Step 1: CFG → PDA

• Given:  A context free grammar G
• Construct: A pushdown automata M 
• Such that:

– Language generated by G is the same as
– Language accepted by M.

Step 1: CFG → PDA

• Basic idea
– Use the stack of the PDA to simulate the 

derivation of a string in the grammar.
• Push S (start variable of G) on the stack
• From this point on, there are two moves the PDA 

can make:
1. If a variable A is on the top of the stack, pop it and push 

the right-hand side of a production A → β from G.  
2. If a terminal, a is on the top of the stack, pop it and 

match it with whatever symbol is being read from the 
tape.

Step 1: CFG → PDA

• Observations:
– There can be many productions that have a 

given variable on the left hand side:
• S → ε | 0S1 | 1S0

– In these cases, the PDA must “choose” which 
string to push onto the stack after pushing a 
variable.

• I.e. the PDA being constructed in non-deterministic.

Step 1: CFG → PDA

• More observations:
– A string will only be accepted if:

• After a string is completely read
• The stack is empty

Step 1: CFG → PDA

• Let’s formalize this:
– Let G = (V, T, S, P) be a context free grammar.  
– We define a pushdown automata 

• M = (Q, Σ, Γ ,δ, q0, Z0 ,F)
– Such that 

• L(M) = L(G) 

Step 1: CFG → PDA

• Define M as follows:
– Q = { q0, q1, q2 }

• qo will be the start state
• q1 will be where all the work gets done
• q2 will be the accepting state

– Γ = V ∪ ∑ ∪ { Z0 }      Z0 ∉ (V ∪ ∑ )
– A = { q2 }
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Step 1: CFG → PDA

• Transition function δ is defined as follows:
– δ (q0, ε, Zo ) = { (q1, SZo) }

• To start things off, push S onto the stack and 
immediately go into state 1 

– δ (q1, ε, A) = { (q1, α ) | A → α is a production 
of G}     for all variables A

• Pop and replace variable.

Step 1: CFG → PDA

• Transition function δ is defined as follows:
– δ (q1, a, a) = { (q1, ε )}  for all terminals a

• Pop and match terminal.

– δ (q1, ε, Z0) = { (q2, Z0) }
• After all reading is done, accept only if stack is 

empty.

– No other transitions exist for M

Step 1: CFG → PDA

• Let’s look at an example:
– Remember the CFG for odd length 

palindromes:

• S → a | b
• S → a S a | b S b

– Let’s convert this to a PDA.

Step 1: CFG → PDA

• Example:
– M = (Q, Σ, Γ ,δ, q0, Z0 ,F)

– Q = { q0, q1, q2 }
– Σ = { a, b }
– Γ = { a, b, S, Z0 }
– F = { q2 }

Step 1: CFG → PDA

q0
q1 q2

ε, Z0 / SZ0 ε, Z0 / Z0

Lots of moves

(see next slide)

Step 1: CFG → PDA

(q1, ε)bbq1

(q1, ε)aaq1

(q1, a)
(q1, b)
(q1, aSa)
(q1, bSb)

Sεq1

Move(s)StackTape inputState
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Step 1: CFG → PDA

• Let’s run M on abbba
– (q0, abbba, Z) a (q1, abbba, SZ)
– a (q1, abbba, aSaZ)   // push
– a (q1, bbba, SaZ)       // match
– a (q1, bbba, bSbaZ)   // push
– a (q1,  bba,  SbaZ)     // match
– a (q1, bba, bbaZ)     // push
– a (q1, ba, baZ)          // match
– a (q1, a, aZ)         // match 
– a (q1, ε, Z)                 // match
– a (q2, ε, Z )                // accept

Step 1: CFG → PDA

• Questions?

Step 2: PDA → CFG

• Given: A pushdown automata M 
• Define: A context free grammar G

• Such that:
– Language accepted by M is the same as
– Language generated by G

Pushdown Automata

• Strings accepted by a PDA by Final State
– Start at (q0, x, Z0) 

• Start state q0
• X on the input tape
• Empty stack

– End with (q, ε, β)
• End in an accepting state (q ∈F)
• All characters of x have been read
• Some string on the stack (doesn’t matter what).

Pushdown Automata

• Strings accepted by a PDA by Empty Stack
– Start at (q0, x, Z0) 

• Start state q0
• X on the input tape
• Empty stack

– End with (q, ε, ε)
• End in any state
• All characters of x have been read
• Stack is empty

Final State vs. Empty Stack

• The two means by which a PDA can accept 
are equivalent wrt the class of languages 
accepted
– Given a PDA M such that L = L(M), there 

exists a PDA M’ such that L = N(M’)
– Given a PDA M such that L = N(M), there 

exists a PDA M’ such that L = L(M’)
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Final State → Empty Stack

• Final State → Empty Stack
– Given a PDA PF = (Q, Σ, Γ ,δF, q0, Z0 ,F)  and 

L = L (PF) then there exists a PDA PN such that 
L = N (PN)

– We will build such a PDA

Accept by Empty Stack

• Final State → Empty Stack
– Basic idea

• Transitions of PN will mimic those of PF

• Create a new state in PN that will empty the stack.
• The machine can move into this new state whenever 

the machine is in an accepting state of PF

Accept by Empty Stack

• Final State → Empty Stack
– We must be careful though

• PF may crash when the stack is empty.  
• In those cases we need to assure that PN does not accept
• To solve this:

– Create a new empty stack symbol X0 which is placed on the 
stack before PF s empty stack marker (Z0)

– Z0 will only be popped by the new “stack emptying state
• The first move of PN will be to place Z0X0 on PN stack.

Accept by Empty Stack

• Final State → Empty Stack

Empty Stack → Final State

• Must show:
– A string x is accepted by PN (by empty stack) 

iff it is accepted by PF (by final state)

– If x is accepted by PN (empty stack) then it is 
accepted by PF (final state)

– If x accepted by PF (final state) then it is 
accepted by PN (empty stack) 

Accept by Empty Stack

• Final State → Empty Stack
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Final State vs. Empty Stack
• We showed: Final State → Empty Stack.

– Given a PDA that accepts by final state, we can build a PDA that
accepts by empty stack

• the inverse can be shown: Empty Stack  → Final State 
– Given a PDA that accepts by empty stack, we can build a PDA that

accepts by final state.

• Showing that PDAs that accept by empty stack and PDAs 
that accept by final state are equivalent.

Questions?

Step 2: PDA → CFG

• Given: A pushdown automata M that 
accepts by empty stack 

• Define: A context free grammar G

• Such that:
– Language accepted by M is the same as
– Language generated by G

Step 2: PDA → CFG

• Basic idea
– We define variables in G to be triplets:

• [p, A, q] will represent a variable, that can generate 
all strings x that:

– Upon reading x on the PDA tape will
– Take you from state p to state q in the PDA and
– Have a “net result” of popping A off the stack

• In essence, A is “eventually” replaced by x
• Note that it may take many moves to get there.

Step 2: PDA → CFG

• Productions of G
1. For all states p in M, add the production

• S → [q0Z0q]
– Following these productions will generate all strings that 

start at qo, and result in an empty stack.  Final state is not 
important.

– In other words, all strings accepted by M.

Step 2: PDA → CFG

• More Productions of G
2. For every q, q1 ∈ Q, a ∈Σ∪{ε} and A ∈Γ

• If δ (q, a, A) contains (q1, ε) then add
– [qAq1] → a

• Meaning you can get from q to q1 while popping A 
from the stack by reading an a.

Step 2: PDA → CFG

• Even More Productions of G
3. For every q, q1 ∈ Q, a ∈Σ∪{ε} and A ∈Γ

• If δ (q, a, A) contains (q1, B1B2…Bm) then 
• For every possible sequence of states q2, …qm+1

• Add 
– [qAqm+1] → a[q1B1q2] [q2B2q3] … [qmBmqm+1]

• Meaning: 
– one way to pop A off the stack and to get from q to qm+1 is to 

» read an a
» use some input to pop B1off the stack (bring you from q1 to 

q2 in the process),
» While in q2, use some input to pop B2 off the stack 

(bringing you to q3 in the process)
» And so on…

q q1

a, A / B1…Bm
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Step 2: PDA → CFG

• One can show by induction (though we won’t) that
– [qAp] ⇒* x iff (q, x, A) a* (p, ε, ε)

– More specifically [q0Z0p] ⇒* x and since we added the 
productions S → [q0Z0p]  for all p, then x ∈ L(G)

– On the flip side S → [q0Z0p] will always be the first 
production of any derivation of G

• (q0, x, Z0) a* (p, ε, ε)
• So x is accepted by empty stack 
• x ∈ L(M)

Step 2: PDA → CFG

• Example

q0
q1

1, X / ε

0,Z / XZ

0,X / XX

1,X / ε
ε,X / ε

L = { 0i1j | i ≥ j ≥ 1}

ε,Z / ε

Step 2: PDA → CFG

• Example
– M = (Q, Σ, Γ ,δ, q0, Z0 ,F)

– Q = { q0, q1 }
– Σ = { 0, 1 }
– Γ = { X, Z }
– Z0 = Z
– F = ∅

Step 2: PDA → CFG

• Corresponding CFG
– Type 1 productions

– S → [q0Zq1]
– S → [q0Zq0]

Step 2: PDA → CFG

• Corresponding CFG
– Type 2 productions

– [q0Xq1] → 1
– [q1Xq1] → 1
– [q1Xq1] → ε
– [q1Zq1] → ε

Step 2: PDA → CFG

• Corresponding CFG
– Type 3 productions
– Transitions to consider:

• δ (q0, 0, Z) = (q0, XZ)
• δ (q0, 0, X) = (q0, XX)
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Step 2: PDA → CFG

• Corresponding CFG
– Type 3 productions

• δ (q0, 0, X) = (q0, XX)
– Look for all sequences of states q0qbqc

– qb and qc can be either q0 or q1

q1q1

q1q0

q0q1

q0q0

qcqb

Step 2: PDA → CFG

• Corresponding CFG
– Type 3 productions

• δ (q0, 0, X) = (q0, XX)
– Add productions

• [q0Xq0] → 0[q0Xq0][q0Xq0]
• [q0Xq0] → 0[q0Xq1][q1Xq0]
• [q0Xq1] → 0[q0Xq0][q0Xq1]
• [q0Xq1] → 0[q0Xq1][q1Xq1]

Step 2: PDA → CFG

• Corresponding CFG
– Type 3 productions

• δ (q0, 0, Z) = (q0, XZ)
– Look for all sequences of states q0qbqc

– qb , qc can be either q0 or q1

q1q1

q1q0

q0q1

q0q0

qcqb

Step 2: PDA → CFG

• Corresponding CFG
– Type 3 productions

• δ (q0, 0, Z) = (q0, XZ)
– Add productions

• [q0Zq0] → 0[q0Xq0][q0Zq0]
• [q0Zq0] → 0[q0Xq1][q1Zq0]
• [q0Zq1] → 0[q0Xq0][q0Zq1]
• [q0Zq1] → 0[q0Xq1][q1Zq1]

Step 2: PDA → CFG

• Complete grammar G = (V, Σ, S, P)
• V = {

– S,       [q0Xq0] ,      [q0Zq0] ,
– [q0Xq1] ,      [q0Zq1],
– [q1Xq0] ,      [q1Zq0],
– [q1Xq1] ,      [q1Zq1],
– [q1Xq1]
– }

Step 2: PDA → CFG

• P = 
• S → [q0Zq1]   (1)      [q0Xq0] → 0[q0Xq0][q0Xq0]  (7) 
• S → [q0Zq0]   (2)      [q0Xq0] → 0[q0Xq1][q1Xq0]  (8)
• [q0Xq1] → 1   (3)      [q0Xq1] → 0[q0Xq0][q0Xq1]  (9)
• [q1Xq1] → 1   (4)      [q0Xq1] → 0[q0Xq1][q1Xq1] (10)
• [q1Xq1] → ε (5) [q0Zq0] → 0[q0Xq0][q0Zq0]  (11)
• [q1Zq1] → ε (6) [q0Zq0] → 0[q0Xq1][q1Zq0] (12)
• [q0Zq1] → 0[q0Xq0][q0Zq1] (13)
• [q0Zq1] → 0[q0Xq1][q1Zq1] (14)
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Step 2: PDA → CFG

• Let’s try a derivation for 00011
– S → [q0Zq1] // P1

→ 0 [q0Xq1] [q1Zq1]                                // P14
→ 00 [q0Xq1] [q1Xq1] [q1Zq1]                  // P10
→ 000 [q0Xq1] [q1Xq1] [q1Xq1] [q1Zq1]    // P10
→ 0001 [q1Xq1] [q1Xq1] [q1Zq1]              // P3
→ 00011 [q1X q1] [q1Zq1]                       // P4
→ 00011 ε [q1Zq1]                                 // P5
→ 00011 ε ε // P6

Summary

• What have we learned?
– (We really don’t need to see the CFG 

corresponding to a PDA, do we?) ☺

Summary

• What we have really learned?
– Given a CFG, we can build a PDA that accepts 

the same language generated by the CFG
– Given a PDA, we can define a CFG that can 

generate the language accepted by the PDA.

• Looking for a machine to accept CGLs?
– The pushdown automata fits the bill!

Next time 

• Closure Properties for CFLs
• Decision Algorithms for CFLs
• Just when you thought it was safe…

– The Pumping Lemma for CFLs


