

Languages

- Recall.
- What is a language?
- What is a class of languages?

Before We Start

- Any questions?

Context Free Languages

- Context Free Languages(CFL) is the next class of languages outside of Regular Languages:
- Means for defining: Context Free Grammar
- Machine for accepting: Pushdown Automata

Context Free Grammars

- Let's formalize this a bit:
- A context free grammar (CFG) is a 4-tuple: (V, T, S, P) where
- V is a set of variables
- T is a set of terminals
- V and Σ are disjoint (I.e. $\mathrm{V} \cap \Sigma=\varnothing$)
- $\mathrm{S} \in \mathrm{V}$, is your start symbol

Context Free Grammars

- Let's formalize this a bit:
- Production rules
- Of the form $\mathrm{A} \rightarrow \beta$ where
$-A \in V$
$-\beta \in(\mathrm{V} \cup \Sigma)^{*}$ string with symbols from V and Σ
- We say that γ can be derived from α in one step:
$-\mathrm{A} \rightarrow \beta$ is a rule
$-\alpha=\alpha_{1} \mathrm{~A} \alpha_{2}$
$-\gamma=\alpha_{1} \beta \alpha_{2}$
$-\alpha \Rightarrow \gamma$

Pushdown Automata

Pushdown Automata

- About this transition function δ :
- During a move of a PDA:
- At most one character is read from the input tape - Λ transitions are okay
- The topmost character is popped from the stack
- The machine will move to a new state based on:
- The character read from the tape
- The character popped off the stack
- The current state of the machine
- 0 or more symbols from the stack alphabet are pushed onto the stack.

Plan for today

- Show that PDAs and CFGs are equivalent.
- Questions?

Equivalence of CFG and PDA

1. Given a CFG, G, construct a PDA M, such that $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{G})$
2. Given a PDA, M, define a CGF, G such that $\mathrm{L}(\mathrm{G})=\mathrm{L}(\mathrm{M})$

Step 1: CFG \rightarrow PDA

- Given: A context free grammar G
- Construct: A pushdown automata M
- Such that:
- Language generated by G is the same as
- Language accepted by M.

Step 1: $\mathrm{CFG} \rightarrow$ PDA

- Basic idea
- Use the stack of the PDA to simulate the derivation of a string in the grammar.
- Push S (start variable of G) on the stack
- From this point on, there are two moves the PDA can make:

1. If a variable A is on the top of the stack, pop it and push the right-hand side of a production $\mathrm{A} \rightarrow \beta$ from G .
2. If a terminal, a is on the top of the stack, pop it and match it with whatever symbol is being read from the tape.

Step 1: CFG \rightarrow PDA

- Observations:
- There can be many productions that have a given variable on the left hand side:
- $\mathrm{S} \rightarrow \varepsilon|0 \mathrm{~S} 1| 1 \mathrm{~S} 0$
- In these cases, the PDA must "choose" which string to push onto the stack after pushing a variable.
- I.e. the PDA being constructed in non-deterministic.
- Let's formalize this:
- Let $\mathrm{G}=(\mathrm{V}, \mathrm{T}, \mathrm{S}, \mathrm{P})$ be a context free grammar.
- We define a pushdown automata
- $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{~F}\right)$
- Such that
- $\mathrm{L}(\mathrm{M})=\mathrm{L}(\mathrm{G})$

Step 1: $\mathrm{CFG} \rightarrow$ PDA

- More observations:
- A string will only be accepted if:
- After a string is completely read
- The stack is empty

Step 1: CFG \rightarrow PDA

- Define M as follows:
$-\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
- q_{o} will be the start state
- q_{1} will be where all the work gets done
- q_{2} will be the accepting state
$-\Gamma=\mathrm{V} \cup \Sigma \cup\left\{\mathrm{Z}_{0}\right\} \quad \mathrm{Z}_{0} \notin(\mathrm{~V} \cup \Sigma)$
$-\mathrm{A}=\left\{\mathrm{q}_{2}\right\}$

Step 1: CFG \rightarrow PDA

- Transition function δ is defined as follows:
$-\delta\left(\mathrm{q}_{0}, \varepsilon, \mathrm{Z}_{\mathrm{o}}\right)=\left\{\left(\mathrm{q}_{1}, \mathrm{SZ}_{\mathrm{o}}\right)\right\}$
- To start things off, push S onto the stack and immediately go into state 1
$-\delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{~A}\right)=\left\{\left(\mathrm{q}_{1}, \alpha\right) \mid \mathrm{A} \rightarrow \alpha\right.$ is a production of $G\}$ for all variables A
- Pop and replace variable.

Step 1: $\mathrm{CFG} \rightarrow$ PDA

- Transition function δ is defined as follows:
$-\delta\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{a}\right)=\left\{\left(\mathrm{q}_{1}, \varepsilon\right)\right\}$ for all terminals a
- Pop and match terminal.
$-\delta\left(\mathrm{q}_{1}, \varepsilon, \mathrm{Z}_{0}\right)=\left\{\left(\mathrm{q}_{2}, \mathrm{Z}_{0}\right)\right\}$
- After all reading is done, accept only if stack is empty.
- No other transitions exist for M

Step 1: CFG \rightarrow PDA

- Let's look at an example:
- Remember the CFG for odd length palindromes:
- $\mathrm{S} \rightarrow \mathrm{a} \mid \mathrm{b}$
- $\mathrm{S} \rightarrow \mathrm{aS}$ a|bSb
- Let's convert this to a PDA.

Step 1: $\mathrm{CFG} \rightarrow$ PDA

- Example:
$-\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{~F}\right)$
$-\mathrm{Q}=\left\{\mathrm{q}_{0}, \mathrm{q}_{1}, \mathrm{q}_{2}\right\}$
$-\Sigma=\{\mathrm{a}, \mathrm{b}\}$
$-\Gamma=\left\{\mathrm{a}, \mathrm{b}, \mathrm{S}, \mathrm{Z}_{0}\right\}$
$-\mathrm{F}=\left\{\mathrm{q}_{2}\right\}$

Step 1: CFG \rightarrow PDA

State	Tape input	Stack	Move(s)
q_{1}	ε	S	$\left(\mathrm{q}_{1}, a\right)$ $\left(\mathrm{q}_{1}, b\right)$ $\left(\mathrm{q}_{1}, \mathrm{aSa}\right)$ $\left(\mathrm{q}_{1}, \mathrm{bSb}\right)$
q_{1}	a	a	$\left(\mathrm{q}_{1}, \varepsilon\right)$
q_{1}	b	b	$\left(\mathrm{q}_{1}, \varepsilon\right)$

$$
\text { Step 1: CFG } \rightarrow \text { PDA }
$$

- Let's run M on abbba
$-\left(q_{0}, a b b b a, Z\right) \mapsto\left(q_{1}, a b b b a, S Z\right)$
$-\quad \mapsto\left(\mathrm{q}_{1}\right.$, abbba, aSaZ $) \quad / /$ push
$-\quad \mapsto\left(\mathrm{q}_{1}\right.$, bbba, SaZ$) \quad / /$ match
$-\quad \mapsto\left(\mathrm{q}_{1}\right.$, bbba, bSbaZ $) \quad / /$ push
$-\quad \mapsto\left(\mathrm{q}_{1}\right.$, bba, SbaZ $) \quad / /$ match
$-\quad \mapsto\left(\mathrm{q}_{1}\right.$, bba, bbaZ $) \quad / /$ push
$-\quad \mapsto\left(\mathrm{q}_{1}, \mathrm{ba}, \mathrm{baZ}\right) \quad / /$ match
$-\quad \mapsto\left(\mathrm{q}_{1}, \mathrm{a}, \mathrm{aZ}\right) \quad / /$ match
- $\quad \mapsto\left(\mathrm{q}_{1}, \varepsilon, \mathrm{Z}\right) \quad / /$ match
$-\quad \mapsto\left(\mathrm{q}_{2}, \varepsilon, \mathrm{Z}\right) \quad / /$ accept

Step 2: PDA \rightarrow CFG

- Given: A pushdown automata M
- Define: A context free grammar G
- Such that:
- Language accepted by M is the same as
- Language generated by G

Step 1: $\mathrm{CFG} \rightarrow$ PDA

- Questions?

Pushdown Automata

- Strings accepted by a PDA by Final State
- Start at ($\mathrm{q}_{0}, \mathrm{x}, \mathrm{Z}_{0}$)
- Start state q_{0}
- X on the input tape
- Empty stack
- End with (q, ε, β)
- End in an accepting state $(\mathrm{q} \in \mathrm{F})$
- All characters of x have been read
- Some string on the stack (doesn't matter what).

Final State vs. Empty Stack

- The two means by which a PDA can accept are equivalent wrt the class of languages accepted
- Given a PDA M such that $L=L(M)$, there exists a PDA M' such that $\mathrm{L}=\mathrm{N}\left(\mathrm{M}^{\prime}\right)$
- Given a PDA M such that $L=N(M)$, there exists a PDA M' such that $\mathrm{L}=\mathrm{L}\left(\mathrm{M}^{\prime}\right)$

Final State \rightarrow Empty Stack

- Final State \rightarrow Empty Stack
- Given a PDA $\mathrm{P}_{\mathrm{F}}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta_{\mathrm{F}}, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{~F}\right)$ and $\mathrm{L}=\mathrm{L}\left(\mathrm{P}_{\mathrm{F}}\right)$ then there exists a PDA P_{N} such that $\mathrm{L}=\mathrm{N}\left(\mathrm{P}_{\mathrm{N}}\right)$
- We will build such a PDA

Accept by Empty Stack

- Final State \rightarrow Empty Stack
- Basic idea
- Transitions of P_{N} will mimic those of P_{F}
- Create a new state in P_{N} that will empty the stack.
- The machine can move into this new state whenever the machine is in an accepting state of P_{F}

Accept by Empty Stack

- Final State \rightarrow Empty Stack
- We must be careful though
- P_{F} may crash when the stack is empty.
- In those cases we need to assure that P_{N} does not accept
- To solve this:
- Create a new empty stack symbol X_{0} which is placed on the stack before P_{F} s empty stack marker (Z_{0})
$-Z_{0}$ will only be popped by the new "stack emptying state
- The first move of P_{N} will be to place $Z_{0} X_{0}$ on P_{N} stack.

Empty Stack \rightarrow Final State

- Must show:
- A string x is accepted by P_{N} (by empty stack)
iff it is accepted by P_{F} (by final state)
- If x is accepted by P_{N} (empty stack) then it is accepted by P_{F} (final state)
- If x accepted by P_{F} (final state) then it is accepted by P_{N} (empty stack)

Accept by Empty Stack

- Final State \rightarrow Empty Stack

Accept by Empty Stack

- Final State \rightarrow Empty Stack

Final State vs. Empty Stack

- We showed: Final State \rightarrow Empty Stack.
- Given a PDA that accepts by final state, we can build a PDA that accepts by empty stack
- the inverse can be shown: Empty Stack \rightarrow Final State
- Given a PDA that accepts by empty stack, we can build a PDA that accepts by final state.
- Showing that PDAs that accept by empty stack and PDAs that accept by final state are equivalent.

Questions?

Step 2: PDA \rightarrow CFG

- Given: A pushdown automata M that accepts by empty stack
- Define: A context free grammar G
- Such that:
- Language accepted by M is the same as
- Language generated by G

Step 2: PDA \rightarrow CFG

- Basic idea
- We define variables in G to be triplets:
- [p, A, q] will represent a variable, that can generate all strings x that:
- Upon reading x on the PDA tape will
- Take you from state p to state q in the PDA and
- Have a "net result" of popping A off the stack
- In essence, A is "eventually" replaced by x
- Note that it may take many moves to get there.

Step 2: PDA \rightarrow CFG

- Productions of G

1. For all states p in M , add the production

- $\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Z}_{0} \mathrm{q}\right]$
- Following these productions will generate all strings that start at q_{0}, and result in an empty stack. Final state is not important.
- In other words, all strings accepted by M.

Step 2: PDA \rightarrow CFG

- More Productions of G

2. For every $\mathrm{q}, \mathrm{q}_{1} \in \mathrm{Q}, \mathrm{a} \in \Sigma \cup\{\varepsilon\}$ and $\mathrm{A} \in \Gamma$

- If $\delta(\mathrm{q}, \mathrm{a}, \mathrm{A})$ contains $\left(\mathrm{q}_{1}, \varepsilon\right)$ then add
$-\left[\mathrm{qAq}_{1}\right] \rightarrow \mathrm{a}$
- Meaning you can get from q to q_{1} while popping A from the stack by reading an a.

- Even More Productions of G

3. For every $\mathrm{q}, \mathrm{q}_{1} \in \mathrm{Q}, \mathrm{a} \in \Sigma \cup\{\varepsilon\}$ and $\mathrm{A} \in \Gamma$

- If $\delta(\mathrm{q}, \mathrm{a}, \mathrm{A})$ contains $\left(\mathrm{q}_{1}, \mathrm{~B}_{1} \mathrm{~B}_{2} \ldots \mathrm{~B}_{\mathrm{m}}\right)$ then
- For every possible sequence of states $\mathrm{q}_{2}, \ldots \mathrm{q}_{\mathrm{m}+1}$
- Add
$-\left[\mathrm{qAq}_{\mathrm{m}+1}\right] \rightarrow \mathrm{a}\left[\mathrm{q}_{1} \mathrm{~B}_{1} \mathrm{q}_{2}\right]\left[\mathrm{q}_{2} \mathrm{~B}_{2} \mathrm{q}_{3}\right] \ldots\left[\mathrm{q}_{\mathrm{m}} \mathrm{B}_{\mathrm{m}} \mathrm{q}_{\mathrm{m}+1}\right]$
- Meaning:
- one way to pop A off the stack and to get from q to $\mathrm{q}_{\mathrm{m}+1}$ is to » read an a
" use some input to pop B_{1} off the stack (bring you from q_{1} to q_{2} in the process),
" While in q_{2}, use some input to pop B_{2} off the stack
(bringing you to q_{3} in the process)
» And so on..

Step 2: PDA \rightarrow CFG

- One can show by induction (though we won't) that
$-[q A p] \Rightarrow^{*} \mathrm{x}$ iff $(\mathrm{q}, \mathrm{x}, \mathrm{A}) \mapsto^{*}(\mathrm{p}, \varepsilon, \varepsilon)$
- More specifically $\left[\mathrm{q}_{0} \mathrm{Z}_{0} \mathrm{p}\right] \Rightarrow{ }^{*} \mathrm{x}$ and since we added the productions $\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Z}_{0} \mathrm{p}\right]$ for all p , then $\mathrm{x} \in \mathrm{L}(\mathrm{G})$
- On the flip side $\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Z}_{0} \mathrm{p}\right]$ will always be the first production of any derivation of G
- $\left(\mathrm{q}_{0}, \mathrm{x}, \mathrm{Z}_{0}\right) \mapsto^{*}(\mathrm{p}, \varepsilon, \varepsilon)$
- So x is accepted by empty stack
- $\mathrm{x} \in \mathrm{L}(\mathrm{M})$

Step 2: PDA \rightarrow CFG

- Example
$L=\left\{0^{i} 1 \mathrm{j} \mid \mathrm{i} \geq \mathrm{j} \geq 1\right\}$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 1 productions
$-\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right]$
$-\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right]$
$-\Gamma=\{\mathrm{X}, \mathrm{Z}\}$
$-Z_{0}=\mathrm{Z}$
$-\mathrm{F}=\varnothing$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 2 productions
$-\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right] \rightarrow 1$
$-\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right] \rightarrow 1$
$-\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right] \rightarrow \varepsilon$
$-\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \rightarrow \varepsilon$

Step 2: PDA \rightarrow CFG

- Corresponding CFG

- Type 3 productions
- Transitions to consider:
- $\delta\left(\mathrm{q}_{0}, 0, \mathrm{Z}\right)=\left(\mathrm{q}_{0}, \mathrm{XZ}\right)$
- $\delta\left(\mathrm{q}_{0}, 0, \mathrm{X}\right)=\left(\mathrm{q}_{0}, \mathrm{XX}\right)$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 3 productions
- $\delta\left(q_{0}, 0, X\right)=\left(q_{0}, X X\right)$
- Look for all sequences of states $q_{o} q_{b} q_{c}$
$-q_{b}$ and q_{c} can be either q_{0} or q_{1}

$\mathbf{q}_{\mathbf{b}}$	$\underline{\mathbf{q}}_{\mathbf{c}}$
q_{0}	q_{0}
q_{1}	q_{0}
q_{0}	q_{1}
q_{1}	q_{1}

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 3 productions
- $\delta\left(\mathrm{q}_{0}, 0, \mathrm{Z}\right)=\left(\mathrm{q}_{0}, \mathrm{XZ}\right)$
- Look for all sequences of states $q_{0} q_{b} q^{c}$
$-q_{b}, q_{c}$ can be either q_{0} or q_{1}

$\underline{\mathbf{q}}_{\mathbf{b}}$	$\underline{\mathbf{q}}_{\mathbf{c}}$
q_{0}	q_{0}
q_{1}	q_{0}
q_{0}	q_{1}
q_{1}	q_{1}

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 3 productions
- $\delta\left(\mathrm{q}_{0}, 0, \mathrm{X}\right)=\left(\mathrm{q}_{0}, \mathrm{XX}\right)$
- Add productions
- $\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{0}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]$

Step 2: PDA \rightarrow CFG

- Corresponding CFG
- Type 3 productions
- $\delta\left(\mathrm{q}_{0}, 0, \mathrm{Z}\right)=\left(\mathrm{q}_{0}, \mathrm{XZ}\right)$
- Add productions
- $\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{0}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right]$
- $\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right]$

Step 2: PDA \rightarrow CFG

- Complete grammar $\mathrm{G}=(\mathrm{V}, \Sigma, \mathrm{S}, \mathrm{P})$
- $\mathrm{V}=\{$
$-\mathrm{S}, \quad\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right], \quad\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right]$,
$-\quad\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right], \quad\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right]$,
$-\quad\left[\mathrm{q}_{1} \mathrm{Xq}_{0}\right], \quad\left[\mathrm{q}_{1} \mathrm{Zq}_{0}\right]$,
$-\quad\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right], \quad\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right]$,
$-\quad\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]$
- \}

Step 2: PDA \rightarrow CFG

- $\mathrm{P}=$
- $\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Zq}_{1}\right] \quad(1) \quad\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]$ (7)
- $\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right] \quad$ (2) $\quad\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{0}\right]$ (8)
- $\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right] \rightarrow 1 \quad$ (3) $\quad\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]$ (9)
- $\left[q_{1} X_{1}\right] \rightarrow 1 \quad$ (4) $\quad\left[q_{0} \mathrm{Xq}_{1}\right] \rightarrow 0\left[q_{0} \mathrm{Xq}_{1}\right]\left[q_{1} X q_{1}\right](10)$
- $\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right] \rightarrow \varepsilon \quad$ (5) $\quad\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{X} \mathrm{q}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right]$ (11)
- $\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \rightarrow \varepsilon \quad$ (6) $\quad\left[\mathrm{q}_{0} \mathrm{Zq}_{0}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{0}\right]$ (12)
$\left[q_{0} \mathrm{Zq}_{1}\right] \rightarrow 0\left[\mathrm{q}_{0} \mathrm{Xq}_{0}\right]\left[\mathrm{q}_{0} \mathrm{Zq}_{\mathrm{i}}\right](13)$
$\left[q_{0} \mathrm{Zq}_{1}\right] \rightarrow 0\left[q_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right](14)$

Step 2: PDA \rightarrow CFG

- Let's try a derivation for 00011
$-\mathrm{S} \rightarrow\left[\mathrm{q}_{0} \underline{\mathrm{Zq}_{1}}\right]$
// P1
$\rightarrow 0\left[\mathrm{q}_{0} \underline{\mathrm{Xq}_{1}}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \quad / / \mathrm{P} 14$
$\rightarrow 00\left[\mathrm{q}_{0} \underline{\mathrm{Xq}_{1}}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \quad / / \mathrm{P} 10$
$\rightarrow 000\left[\mathrm{q}_{0} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \quad / / \mathrm{P} 10$
$\rightarrow 0001\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Xq}_{1}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \quad / / \mathrm{P} 3$
$\rightarrow 00011\left[\mathrm{q}_{1} \underline{\mathrm{X}_{1}}\right]\left[\mathrm{q}_{1} \mathrm{Zq}_{1}\right] \quad / / \mathrm{P} 4$
$\rightarrow 00011 \varepsilon\left[\mathrm{q}_{1} \underline{Z q}_{1}\right] \quad / / \mathrm{P} 5$
$\rightarrow 00011 \varepsilon \varepsilon \quad / / \mathrm{P} 6$
- Looking for a machine to accept CGLs?
- The pushdown automata fits the bill!

Summary

- What have we learned?
- (We really don't need to see the CFG corresponding to a PDA, do we?) $)$
- What we have really learned?
- Given a CFG, we can build a PDA that accepts the same language generated by the CFG
- Given a PDA, we can define a CFG that can generate the language accepted by the PDA.

Next time

- Closure Properties for CFLs
- Decision Algorithms for CFLs
- Just when you thought it was safe...
- The Pumping Lemma for CFLs

