

Deterministic PDAs

- As mentioned before

- Our basic PDA in non-deterministic
- We can define a Deterministic PDA (DPDA) as follows:
- Let $\mathrm{M}=\left(\mathrm{Q}, \Sigma, \Gamma, \delta, \mathrm{q}_{0}, \mathrm{Z}_{0}, \mathrm{~F}\right)$ be a PDA
- M is deterministic if:
$-\delta(\mathrm{q}, \mathrm{a}, \mathrm{X})$ has at most one element
- If $\delta(\mathrm{q}, \varepsilon, \mathrm{X}) \neq \varnothing$ then $\delta(\mathrm{q}, \mathrm{a}, \mathrm{X})=\varnothing$ for all $\mathrm{a} \in \Sigma$

Deterministic PDAs

- In other words:
- There is no configuration where the machine has a "choice" of moves
- Each transition has at most 1 element.
- If you can make a ε-transition from a state with a given symbol on the stack,
- You cannot make that same transition on any tape input symbol.

Deterministic PDAs

- A language L is a deterministic context-free language (DCFL) if there is a DPA that accepts L

PDA Example

- Example:
$-L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$
- First using a PDA:
- Let the stack store the "excess" of one symbol over another
- If more a's have been read than b's, a's will be on the stack, and via versa
- If a is on the stack and you read $a b$, simple match the a with the b.
- If a is on the stack and you read an a, we have one more extra a Push it on the stack.
- An empty stack means the number of a's and b's are equal.

PDA Example

- Example:
$-\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{n}_{\mathrm{a}}(\mathrm{x})>\mathrm{n}_{\mathrm{b}}(\mathrm{x})\right\}$
- The PDA will have 2 states:
- State 0 (start) : where all the work gets done
- State 1 (accepting) : one you're in here, the machine stops.
- The machine can "choose" to go into state 1 on a $\varepsilon \operatorname{transition}$ whenever an a is on the stack.

PDA Example

- Example:
$-L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$

PDA Example

- Let's try on JFLAP

PDA Example

- Example:
$-L=\left\{x \in\{a, b\}^{*} \mid n_{a}(x)>n_{b}(x)\right\}$
- The PDA will have 2 states:
- State 0 (start) : when $\mathrm{n}_{\mathrm{a}}(\mathrm{x}) \leq \mathrm{n}_{\mathrm{b}}(\mathrm{x})$ - Equality or surplus of b's
- State 1 (accepting) : when $\mathrm{n}_{\mathrm{a}}(\mathrm{x})>\mathrm{n}_{\mathrm{b}}(\mathrm{x})$
- Surplus of a's

PDA Example

- Example:
$-\mathrm{L}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{b}\}^{*} \mid \mathrm{n}_{\mathrm{a}}(\mathrm{x})>\mathrm{n}_{\mathrm{b}}(\mathrm{x})\right\}$

PDA Example

- Let's try on JFLAP

Now you might be wondering...
We know that all DCFLs are CFLs

It can be shown...

- That the language pal:

$$
-\mathrm{pal}=\left\{\mathrm{x} \in\{\mathrm{a}, \mathrm{~b}\}^{*} \mid \mathrm{x}=\mathrm{x}^{\mathrm{r}}\right\}
$$

- Cannot be accepted by any DPDA.

Why DPDAs are important

- A compiler may wish to implement a PDA in software to parse a program given by a given grammar
- DPDAs and ambiguity
- If L can be accepted by a DPDA, then L can be expressed by an unambiguous CFG
- Not visa versa
- Theorems 6.20 / 6.21 in text

Determinism vs. Non-Determinism

- Comparing FAs and PDAs
- DPDAs allow for ε-transitions
- DPDAs allow for no moves
- FAs and NFAs are equivalent
- PDAs and DPDAs are not equivalent
- Questions

