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Pushdown Automata

Determinism

Deterministic PDAs

• As mentioned before
– Our basic PDA in non-deterministic
– We can define a Deterministic PDA (DPDA) as 

follows:
• Let M = (Q, Σ, Γ , δ, q0, Z0, F)  be a PDA
• M is deterministic if:

– δ (q, a, X) has at most one element
– If δ (q, ε, X) ≠ ∅ then δ (q, a, X) = ∅ for all a ∈ Σ

Deterministic PDAs

• In other words:
– There is no configuration where the machine 

has a “choice” of moves
• Each transition has at most 1 element.
• If you can make a ε -transition from a state with a 

given symbol on the stack,
– You cannot make that same transition on any tape input 

symbol.

Deterministic PDAs

• A language L is a deterministic context-free 
language (DCFL) if there is a DPA that 
accepts L

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– First using a PDA:
• Let the stack store the “excess” of one symbol over another

– If more a’s have been read than b’s, a’s will be on the stack, and 
via versa

– If a is on the stack and you read a b, simple match the a with the 
b. 

– If a is on the stack and you read an a, we have one more extra a –
Push it on the stack.

– An empty stack means the number of a’s and b’s are equal.

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– The PDA will have 2 states:
• State 0 (start) : where all the work gets done
• State 1 (accepting) : one you’re in here, the machine 

stops.
– The machine can “choose” to go into state 1 on 

a ε transition whenever an a is on the stack.
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PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

q0 q1

a, Z0 / a Z0

b, Z0 / b Z0

b, a / ε

b, b / bb

a, b / ε
a, a / aa

ε, a / a

Non-determinism

PDA Example

• Let’s try on JFLAP

PDA Example

Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– Removing the non-determinism :
• Let the stack store 1 minus the “excess” of one 

symbol over another
• The state will determine whether you have excess 

a’s or excess b’s

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– The PDA will have 2 states:
• State 0 (start) : when na (x) ≤ nb (x) 

– Equality or surplus of b’s

• State 1 (accepting) : when na (x) >nb (x) 
– Surplus of a’s

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

q0 q1

a, Z0 / Z0

b, Z0 / b Z0

b, a / ε
b, b / bb

a, b / ε

a, a / aa
a, Z0 /a Z0

b, Z0 / Z0

PDA Example

• Let’s try on JFLAP
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Now you might be wondering…

CFL

Is there anything in here?

We know that all DCFLs are CFLs

DCFL

It can be shown…

• That the language pal:
– pal = { x ∈ { a, b }* | x = xr }

• Cannot be accepted by any DPDA.

It can also be shown

• That all regular languages can be accepted 
by a DPDA. 
– Since an DFA is essentially a DPDA that 

doesn’t make use of the stack.

Now our picture looks like

Regular Languages

Finite 
Languages

Deterministic Context Free Languages

Context Free Languages

Why DPDAs are important

• A compiler may wish to implement a PDA 
in software to parse a program given by a 
given grammar

• DPDAs and ambiguity
– If L can be accepted by a DPDA, then L can be 

expressed by an unambiguous CFG
– Not visa versa
– Theorems 6.20 / 6.21 in text

Determinism vs. Non-Determinism

• Comparing FAs and PDAs
– DPDAs allow for ε -transitions
– DPDAs allow for no moves 

– FAs and NFAs are equivalent
– PDAs and DPDAs are not equivalent

– Questions


