
1

Non deterministic finite automata

Deterministic Finite Automata

• Automata we’ve been dealing with have
been deterministic
– For every state and every alphabet symbol there

is exactly one move that the machine can make.
– δ : Q x Σ → Q
– δ is a total function: completely defined. I.e. it

is defined for all q ∈ Q and a ∈ Σ

Non-Deterministic Finite Automata
(NFA)

• Non-determinism
– When machine is in a given state and reads a

symbol, the machine will have a choice of
where to move to next.

– There may be states where, after reading a
given symbol, the machine has nowhere to go.

– Applying the transition function will give, not 1
state, but 0 or more states.

Non-Deterministic Finite Automata
(NFA)

• Example: L corresponds to the regular
expression {11 ∪ 110}*0

Non-Deterministic Finite Automata
(NFA)

• How does such a machine accept?
– A string will be accepted if there is at least one

sequence of state transitions on an input that
leaves the machine in an accepting state.

– Such a machine is called a non-deterministic
finite automata (NFA)

Non-Deterministic Finite Automata
(NFA)

• A Non-Deterministic Finite Automata is a
5-tuple (Q, Σ, δ, qo, F) where
– Q is a finite set (of states)
– Σ is a finite alphabet of symbols
– qo∈ Q is the start state
– F ⊆ Q is the set of final states
– δ is a function from Q x Σ to 2Q (transition

function)

2

Non-Deterministic Finite Automata
(NFA)

• Transition function
– δ is a function from Q x Σ to 2Q

– δ (q, a) = subset of Q (possibly empty)
– In our example

• δ (q3, 0) = {qo}
• δ (qo, 1) = {q1, q2}
• δ (q4, 1) = ∅

Non-Deterministic Finite Automata
(NFA)

• Transition function on a string x
– is a function from Q x Σ* to 2Q

– (q, x) = subset of Q (possibly empty)
– Set of all states that the machine can be in,

upon following all possible paths on input x.

δ̂

δ̂

Non-Deterministic Finite Automata
(NFA)

• Recursive definition of
1. For any q ∈Q, (q, ε) = {q}
2. For any y ∈ Σ*, a ∈ Σ, q ∈Q

Set of all states obtained by applying δ to all states in
(q,y) and input a.

U
),(*

),(),(ˆ
yqp

apyaq
δ

δδ
∈

=

δ̂

δ̂

δ̂

Non-Deterministic Finite Automata
(NFA)

• In our example:
– (q0, 110) = (q1, 10) ∪ (q2, 10)

= (q0, 0) ∪ (q3, 0)
= (q4, ε) ∪ (q0, ε)
= {q4} ∪ {q0}
= {q0, q4}

δ̂ δ̂ δ̂

δ̂ δ̂

δ̂ δ̂

Non-Deterministic Finite Automata
(NFA)

• Definition of accepting
– A string x is accepted if running the machine on

input x, considering all paths, puts the machine
into one of the final states

– Formally:
• x ∈ Σ* is accepted by A if
• (q0, x) ∩ F ≠ ∅δ̂

Non-Deterministic Finite Automata
(NFA)

• Once again, in our example
– (q0, 110) = {q0, q4}
– F = {q4}
– (q0, 110) ∩ F = {q4} ≠ ∅
– 110 is accepted by A

δ̂

δ̂

3

Non-Deterministic Finite Automata
(NFA)

• Language accepted by A
– The language accepted by A

• L(A) = { x ∈ Σ* | x is accepted by A }

• If L is a language over Σ, L is accepted by
A iff L = L(A).
– For all x ∈ L, x is accepted by A.
– For all x ∉ L, x is rejected by A.

Non-Deterministic Finite Automata
(NFA)

• I bet that you’re asking…
– Can JFLAP handle NFAs?
– Well, let’s check and see!

Non-Deterministic Finite Automata
(NFA)

• Let’s try another one:
– L = set of strings ending in ab

– Let’s see how this fares with JFLAP

Reality Check

• Nondeterministic Finite Automata (NFA)
– At each state,for each symbol, the machine can

move into 0 or more states.
– δ is a function from Q x Σ to 2Q

– A string is accepted if there is at least one
sequence of moves on input x placing the
machine into an accepting state.

– Questions?

DFA / NFA Equivalence

• Surprisingly enough
– Adding nondeterminism to our DFA does NOT

give it any additional language accepting
power.

– DFAs and NFAs are equivalent
• Every language that can be accepted by an NFA can

also be accepted by a DFA and visa-versa

DFA / NFA Equivalence

• How we will show this
1. Given an NFA that accepts L, create an DFA

that also accepts L
2. Given an DFA that accepts L, create an NFA

that also accepts L

Are we ready?

4

NFA->DFA

• Given N FA find DFA
– Let N = (QN, Σ, δN, q0, FN) be a NFA then

• There exists a DFA, D = (QD, Σ, δD ,qD, FD)
• Such that L(N) = L(D)

NFA -> DFA

• Basic idea
– Recall that for a NFA, δ: Q x Σ → 2Q

– Use the states of D to represent subsets of Q.
– If there is one state of D for every subset of Q,

then the non-determinism of N can be
eliminated.

– This technique, called subset construction, is a
primary means for removing non-determinism
from an NFA.

NFA -> DFA

• Formal definition
– N = (QN, Σ, δN, q0, FN) be a NFA
– We define DFA, D = (QD, Σ, δD, qD, FD)

• QD = 2Q

• qD = {q0}
• For q ∈ QD and a ∈ Σ,
•

• FD = {q ∈ QD | q ∩ FN ≠ ∅ }
– Note that we need only include states on D (subsets of

Q) if the state is reachable.

U
qp

ND apaq
∈

=),(),(δδ

NFA -> DFA

• Algorithm for building D
– Add {q0} to QD
– While there are states of QD whose transitions are yet to be

defined
• Let q ∈ QD

• For each a ∈ Σ, determine the set of states, P, in N that are
reachable from q on input a

• If there is no state in QD corresponding to P, add one.
• Define δD (q, a) = state in QD corresponding to P

– Define FD as any state in QD that corresponds to a subset
containing any of the final states of N

NFA -> DFA

• Example

NFA -> DFA

• Now we must show that D accepts the same
language as N
– It can be shown (by induction) that for all x ∈
Σ*

• (qD, x) = (q0, x)

• Note that both of these are Sets of states from N

• See Theorem 2.11 in Text

δ̂D δ̂N

5

NFA -> DFA

• Show that D and N recognize the same
language
– x is accepted by D iff (qD, x) ∈ FD

– FD contains sets that contain any state in FN

– Thus
• (qD, x) ∈ FD iff (qN, x) ∈ FN

• x is accepted by D iff x is accepted by N

δ̂D

δ̂D δ̂N

What have we shown

• In Step 1 we’ve shown:
– Given a NFA

• There exists an DFA that accepts the same language
• Non-determinism can be removed from an NFA by

using a subset construction algorithm.

– Questions?

Step 2: Given DFA find NFA

• Observe that a DFA can easily be converted
to an equivalent NFA:
– DFAs – all transitions lead to exactly one state
– Define the transitions of the NFA to consists of

sets of only 1 element.

What have we shown

• In Step 2 we’ve shown:
– Given a DFA

• There exists an NFA that accepts the same language

What have we shown

NFA

DFA

If L ∈ NFA then L ∈ DFA

Is there
something
in here?

Equivalence

NFA

DFA

If L ∈ DFA then L ∈ NFA

6

Summary

• Non-deterministic finite automata (NFA)
– Machine now can “choose” it’s path.
– Each transition takes you from a state to a set of states.

– Equivalent in language recognition power to DFA.

– Questions?

