Non deterministic finite automata

Deterministic Finite Automata

- Automata we've been dealing with have been deterministic
 - For every state and every alphabet symbol there is exactly one move that the machine can make.
 - $-\delta: Q \ge \Sigma \to Q$
 - δ is a total function: completely defined. I.e. it is defined for all $q\in Q$ and $a\in \Sigma$

Non-Deterministic Finite Automata (NFA)

- Non-determinism
 - When machine is in a given state and reads a symbol, the machine will have a choice of where to move to next.
 - There may be states where, after reading a given symbol, the machine has nowhere to go.
 - Applying the transition function will give, not 1 state, but 0 or more states.

Non-Deterministic Finite Automata (NFA)

• Example: L corresponds to the regular expression $\{11 \cup 110\}^*0$

Non-Deterministic Finite Automata (NFA)

- How does such a machine accept?
 - A string will be accepted if there is <u>at least one</u> sequence of state transitions on an input that leaves the machine in an accepting state.
 - Such a machine is called a <u>non-deterministic</u> <u>finite automata</u> (NFA)

Non-Deterministic Finite Automata (NFA)

- A Non-Deterministic Finite Automata is a 5-tuple (Q, Σ, δ, q_o, F) where
 - -Q is a finite set (of states)
 - $-\Sigma$ is a finite alphabet of symbols
 - $-q_o \in Q$ is the start state
 - $-F \subseteq Q$ is the set of final states
 - δ is a function from Q x Σ to 2^Q (transition function)

Non-Deterministic Finite Automata (NFA)

- Transition function
 - $-\delta$ is a function from $Q \ge 2^{Q}$
 - $-\delta$ (q, a) = subset of Q (possibly empty)
 - In our example
 - $\delta(q_3, 0) = \{q_0\}$
 - $\delta(q_0, 1) = \{q_1, q_2\}$
 - $\delta(q_4, 1) = \emptyset$

Non-Deterministic Finite Automata (NFA)

- Transition function on a string x
 - δ is a function from Q x Σ^* to 2^Q
 - $\stackrel{\text{A}}{\circ}$ (q, x) = subset of Q (possibly empty)
 - Set of all states that the machine can be in, upon following all possible paths on input x.

Non-Deterministic Finite Automata (NFA)

- Recursive definition of ^δ
- 1. For any $q \in Q^{A}_{\mathcal{S}}$ $(q, \varepsilon) = \{q\}$
- 2. For any $y \in \Sigma^*$, $a \in \Sigma$, $q \in Q$

$$\hat{\delta}(q, ya) = \bigcup_{p \in \delta^*(q, y)} \delta(p, a)$$

Set of all states obtained by applying δ to all states in $(\hat{\textbf{Q}}, y)$ and input a.

Non-Deterministic Finite Automata (NFA)

• In our example:

$$\begin{array}{l} \frac{3}{5} & (q_0, 110) = & (q_1, 10) \cup & (q_2, 10) \\ & = & (q_0, 0) \cup & (q_3, 0) \\ & = & (q_4, \epsilon) \cup & (q_0, \epsilon) \\ & = & \{q_4\} \cup & \{q_0\} \end{array}$$

 $= \{q_0, q_4\}$

Non-Deterministic Finite Automata (NFA)

- Definition of accepting
 - A string x is accepted if running the machine on input x, considering all paths, puts the machine into one of the final states
 - Formally:
 - $x \in \Sigma^*$ is accepted by A if
 - $\hat{\delta}$ $(q_0, x) \cap F \neq \emptyset$

Non-Deterministic Finite Automata (NFA)

• Once again, in our example

$$\hat{\delta}_{-} (q_0, 110) = \{q_0, q_4\}$$

$$\Gamma = \{q_4\}$$

- $(\mathbf{q}_0, 110) \cap \mathbf{F} = {\mathbf{q}_4} \neq \emptyset$
- 110 is accepted by A

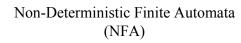
Non-Deterministic Finite Automata (NFA)

- Language accepted by A

 The language accepted by A
 L(A) = { x ∈ Σ* | x is accepted by A }
- If L is a language over Σ , L is accepted by A iff L = L(A).
 - For all $x \in L$, x is accepted by A.
 - For all $x \notin L$, x is rejected by A.

Non-Deterministic Finite Automata (NFA)

- I bet that you're asking... - Can JFLAP handle NFAs?
 - Well, let's check and see!



Let's try another one:
 L = set of strings ending in ab

$$q_0$$
 a q_1 b q_2

- Let's see how this fares with JFLAP

Reality Check

- Nondeterministic Finite Automata (NFA)
 - At each state, for each symbol, the machine can move into 0 or more states.
 - $-\delta$ is a function from $Q \ge \Sigma$ to 2^Q
 - A string is accepted if there is at least one sequence of moves on input x placing the machine into an accepting state.
 - Questions?

DFA / NFA Equivalence

- · Surprisingly enough
 - Adding nondeterminism to our DFA does NOT give it any additional language accepting power.
 - DFAs and NFAs are equivalent
 - Every language that can be accepted by an NFA can also be accepted by a DFA and visa-versa

DFA / NFA Equivalence

- How we will show this
 - 1. Given an NFA that accepts L, create an DFA that also accepts L
 - 2. Given an DFA that accepts L, create an NFA that also accepts L

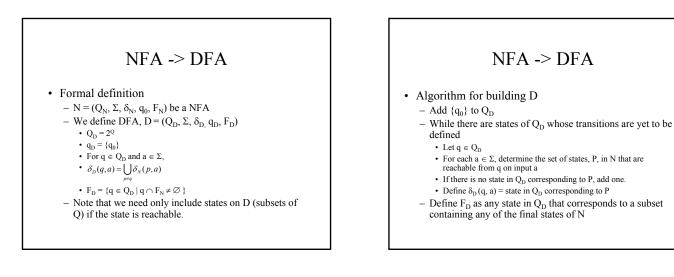
Are we ready?

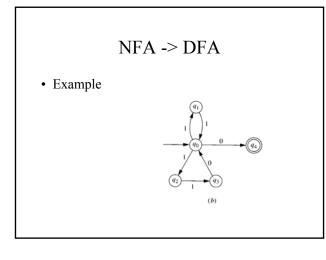
NFA->DFA

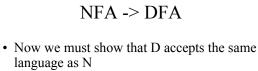
- Given N FA find DFA
 - Let N = (Q_N, Σ , δ_N , q_0 , F_N) be a NFA then
 - There exists a DFA, $D = (Q_D, \Sigma, \delta_D, q_D, F_D)$
 - Such that L(N) = L(D)

NFA -> DFA

- Basic idea
 - Recall that for a NFA, $\delta: Q \ge \Sigma \rightarrow 2^Q$
 - Use the states of D to represent subsets of Q.
 - If there is one state of D for every subset of Q, then the non-determinism of N can be eliminated.
 - This technique, called <u>subset construction</u>, is a primary means for removing non-determinism from an NFA.







– It can be shown (by induction) that for all $x \in \Sigma^*$

 δ_{D} $(q_{\mathsf{D}}, x) \delta_{\mathsf{N}}$ (q_{0}, x)

- · Note that both of these are Sets of states from N
- See Theorem 2.11 in Text

NFA -> DFA

- Show that D and N recognize the same language
 - x is accepted by D iff $\delta_D(q_D, x) \in F_D$
 - $F_{\rm D}$ contains sets that contain any state in $F_{\rm N}$
 - Thus

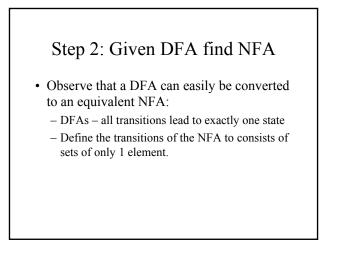
 $\widehat{\bullet_{\mathsf{D}}} \quad (q_{\mathsf{D}}, x) \in F_{\mathsf{D}} \text{ iff} \widehat{\bullet}_{\mathsf{N}} \quad (q_{\mathsf{N}}, x) \in F_{\mathsf{N}}$

• x is accepted by D iff x is accepted by N

What have we shown

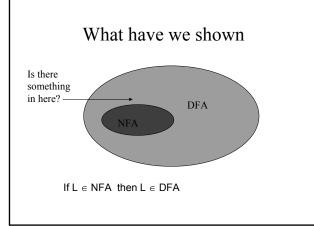
- In Step 1 we've shown:
 - Given a NFA
 - There exists an DFA that accepts the same language
 - Non-determinism can be removed from an NFA by using a subset construction algorithm.

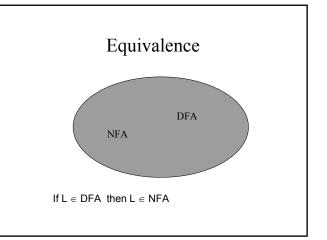
– Questions?



What have we shown

- In Step 2 we've shown:
 - Given a DFA
 - There exists an NFA that accepts the same language





Summary

- Non-deterministic finite automata (NFA)
 - Machine now can "choose" it's path.
 - Each transition takes you from a state to a set of states.
 - Equivalent in language recognition power to DFA.
 - Questions?