Equivalence and DFA Minimization

Homework

- Homework #1 returned
- Homework #2 Due today
- Homework #3
 - Exercise 4.1.1b pg 129
 - Exercise 4.1.1d pg 129
 - Exercise 4.3.2 pg 153
 - Exercise 4.3.4 pg 154
 - Exercise 4.4.2 (a,b) pg 164

Homework & Exams

- Our first exam is next Monday 10/6
- Homework #3 is due
 - Next Wednesday 10/8
 - Problem session this Wednesday 10/1
 - Please come with questions!!!

Before We Start

• Any questions?

Plan for today

• Minimization of DFAs

Languages

• Recall.

- What is a language?
- What is a class of languages?

Regular Languages

- · What we know about regular languages
 - Described using regular expressions
 - · Set operations of union, concatenation, Kleene Star
 - Kleene Theorem
 - A language is regular iff there exists a finite automata that accepts the language

Minimal Finite Automata

- Motivation
 - Consider the question:
 - Do two finite automata accept the same language?
 - To answer, we introduce the Minimal Finite Automata (MFA)
 - Given a DFA, create a new DFA with the minimal number of states possible that accepts the same language.

Minimal Finite Automata

- Motivation
 - Consider the question:
 - Do two finite automata accept the same language?
 - Answer
 - We can generate the MFA for each DFA, then compare the MFAs on a state by state basis.

Minimal Finite Automata

- Plan
 - Equivalent states of a DFA
 - Devise an algorithm (based on equivalent states) that creates a minimal DFA from an DFA
 - Some examples

Minimal Finite Automata

- Equivalent States
 - $-M = (Q, \Sigma, q_0, \delta, F)$
 - Two states, p, q ∈Q are said to be <u>equivalent</u> if
 For all strings x ∈ Σ*
 - $\widehat{\delta} \quad (p,x) \text{ is in an accepting state iff } \widehat{\delta} (q,x) \text{ is in an accepting state}$
 - $-\frac{2}{3}f \quad (p, x) \text{ is an accepting state then } \begin{cases} q, x) \text{ is an accepting state } \\ -\frac{2}{3}If \quad (p, x) \text{ is not an accepting state then } \\ \frac{2}{3}accepting state \end{cases}$
 - If two states are not equivalent, they are said to be distinguishable.

Minimal Finite Automata

- Equivalent States
 - In building a MFA, equivalent states can be combined.

• Example $\underbrace{\operatorname{Start}}_{\mathbb{C}} \xrightarrow{0}_{\mathbb{C}} \xrightarrow{1}_{\mathbb{C}} \xrightarrow{0}_{\mathbb{C}} \xrightarrow{1}_{\mathbb{C}} \xrightarrow{0}_{\mathbb{C}} \xrightarrow{1}_{\mathbb{C}} \xrightarrow{0}_{\mathbb{C}} \xrightarrow{1}_{\mathbb{C}} \xrightarrow{1}_{\mathbb{C}$

Minimal Finite Automata

- Example:
 - States C and G are distinguishable
 One is accepting, one is not
 - States A and G are distinguishable
 - $\bullet \delta$ (A, 01) = C (accepting)
 - • δ (G, 01) = E (not-accepting)

Minimal Finite Automata

- Example:
 - States B and H are equivalent
 - $\delta(B, 1) = \delta(H, 1) = C$
 - $\overset{A}{\partial} (B, 1x) = (H, 1x)$ for any x
 - $\delta(B, 0) = \delta(H, 0) = G$
 - $\delta (B, 0x) \delta (E, 0x)$ for any x
 - So for any x, δ (B, x) and δ (H, x) will either both be accepting or both not be accepted.

Minimal Finite Automata

- Example:
 - States A and E are equivalent
 - $\delta(A, 1) = \delta(E, 1) = F$
 - δ (A, 1x) δ (E, 1x) for any x
 - $\delta(A, 0) = B, \delta(E, 0) = H$
 - B and H are equivalent

Minimal Finite Automata

- Recursive algorithm to find distinguishable states:
 - Consider pairs {p,q}
 - For each pair we will determine whether p is distinguishable from q
 - Said another way, for each pair {p,q} we will determine if p is not equivalent to q.

- Recursive algorithm
 - Base case:
 - If p is accepting and q is non-accepting then $\{p,q\}$ is distinguishable
 - Induction
 - For some pair {p,q} if
 - $-\delta(p,a) = r$ and $\delta(q,a) = s$ and
 - $\{r,s\}$ is distinguishable then
 - $\{p,q\}$ is distinguishable

Minimal Finite Automata

- Let's take a look at this induction step
 - If $r = \delta$ (p,a) and $s = \delta$ (q,a) are distinguishable, then there is a string x such that δ (r,x) is accepting and δ (s,x) is not, or visa-versa
 - Then for x, δ (p,ax) is accepting and δ (q,ax) is not, or visa-versa.
 - We found a string, ax such that δ (p,ax) is accepting and (q,ax) is not (or visa-versa), thus $\{p,q\}$ are distinguishable

Minimal Finite Automata

• This algorithm is sometime best visualized by using a table with each table cell representing a pair of states. A mark in a table cell indicates that the two states of the pair are distinguishable.

Minimal Finite Automata

• Distinguishable table

Minimal Finite Automata

- Restatement of algorithm
 - For all pairs {p,q} such that p is accepting and q is not, mark the equivalent cell in the table.
 - Consider each pair {p,q} not yet marked.
 - Determine $r = \delta(p,a)$ and $s = \delta(q,a)$ for each a in Σ .
 - If {r,s} is marked, then mark {p,q}
 - Repeat until no further cells are marked during an iteration of the algorithm

Minimal Finite Automata

• Example

δ (A, 0) = B	$\delta(A, 1) = F$
δ (B, 0) = G	$\delta(B, 1) = \underline{C}$
δ (C, 0) = A	$\delta(C, 1) = \underline{C}$
δ (D, 0) = <u>C</u>	$\delta(D, 1) = G$
δ (E, 0) = H	$\delta(E, 1) = F$
δ (F, 0) = <u>C</u>	$\delta(F, 1) = G$
$\delta (G, 0) = G$	$\delta(G, 1) = E$
δ (H, 0) = G	$\delta(H, 1) = \underline{C}$

• Example

Minimal Finite Automata Minimal Finite Automata • Once our table is complete E and A are equivalent – All unmarked cells correspond to state pairs В х that are not-distinguishable, I.e. they are С х D equivalent х х H and B are equivalent х Е х х - Combine equivalent states into one х х F х - Transitions from equivalent states should map D and F are equivalent G X X х х х to equivalent states х х Н х х х ABCDEFG

- What have we done?
 - Defined the notion of equivalent states
 - Developed a recursive algorithm to determine which states in an FA are equivalent
 - Combine equivalent states to create FA with minimal number of states.
 - Questions?

Minimal Finite Automata

- Let's revisit the question:
 - Given 2 specifications of regular languages, do the specifications describe the same language.
 - Create a MFA for each language
 - Compare the MFAs on a state by state basis.

For the mathematically minded

- · Let's go back to our Discrete Math
 - Relation
 - · Defines relationship between objects
 - Usually given as an ordered pair,
 (x, y) where x,y ∈ some Set
 - Equivalence relation
 - Reflective: (a, a)
 - Symmetric: if (a,b) then (b,a)
 - Transitive: if (a,b) and (b,c) then (a,c)

For the mathematically minded

- Equivalence relations
 - The nice thing about equivalence relations
 - It partitions the elements of your set into a number of distinct and disjoint subsets.
 - · Each subset is called an equivalence class

For the mathematically minded

- MFA and Equivalence Classes
 - State equivalence can be shown to be an equivalence relation on a language.
 - This relation partitions the strings of L into a number of equivalence classes.
 - Each equivalence class corresponds to a state in the MFA.

- Questions?
- Let's take a break