Homework

- Homework \#1 returned
- Homework \#2 Due today
- Homework \#3
- Exercise 4.1.1b pg 129
- Exercise 4.1.1d pg 129
- Exercise 4.3.2 pg 153
- Exercise 4.3.4 pg 154
- Exercise 4.4.2 (a,b) pg 164

Homework \& Exams

- Our first exam is next Monday 10/6
- Homework \#3 is due
- Next Wednesday 10/8
- Problem session this Wednesday 10/1
- Please come with questions!!!

Plan for today

- Minimization of DFAs

Languages

- Recall.
- What is a language?
- What is a class of languages?

Regular Languages

- What we know about regular languages
- Described using regular expressions
- Set operations of union, concatenation, Kleene Star
- Kleene Theorem
- A language is regular iff there exists a finite automata that accepts the language

Minimal Finite Automata

- Motivation
- Consider the question:
- Do two finite automata accept the same language?
- Answer
- We can generate the MFA for each DFA, then compare the MFAs on a state by state basis.

Minimal Finite Automata

- Motivation

- Consider the question:
- Do two finite automata accept the same language?
- To answer, we introduce the Minimal Finite Automata (MFA)
- Given a DFA, create a new DFA with the minimal number of states possible that accepts the same language.

Minimal Finite Automata

- Plan
- Equivalent states of a DFA
- Devise an algorithm (based on equivalent states) that creates a minimal DFA from an DFA
- Some examples

Minimal Finite Automata

- Equivalent States
$-M=\left(Q, \Sigma, q_{0}, \delta, F\right)$
- Two states, $p, q \in Q$ are said to be equivalent if
- For all strings $\mathrm{x} \in \Sigma^{*}$
$\hat{\delta}(p, x)$ is in an accepting state iff $\hat{\delta}(q, x)$ is in an accepting state
- $\hat{\delta}^{f} \quad(p, x)$ is an accepting state then $\hat{\delta}(q, x)$ is an accepting state If (p, x) is not an accepting state then (q, x) is not an סaccepting state
- If two states are not equivalent, they are said to be distinguishable.

Minimal Finite Automata

- Equivalent States
- In building a MFA, equivalent states can be combined.

Minimal Finite Automata

Minimal Finite Automata

- Example

Minimal Finite Automata

- Example:
$\hat{\theta}$ States C and G are distinguishable
- One is accepting, one is not
- States A and G are distinguishable
- $\hat{(A}, 01)=\mathrm{C}$ (accepting)
- $\hat{\delta} \quad(\mathrm{G}, 01)=\mathrm{E}$ (not-accepting)

Minimal Finite Automata

- Example:
- States B and H are equivalent
- $\delta(\mathrm{B}, 1)=\delta(\mathrm{H}, 1)=\mathrm{C}$
$\hat{\delta}^{-} \quad(B, 1 x)=(H, 1 x)$ for any x
- $\delta(\mathrm{B}, 0)=\delta(\mathrm{H}, 0)=\mathrm{G}$ $\hat{\delta} \quad(B, 0 x) \hat{\hat{\delta}} \quad(\mathrm{E}, 0 \mathrm{x})$ for any x
- So for any $\mathrm{x}, \hat{\delta}(\mathrm{B}, \mathrm{x})$ and $\hat{\delta}(\mathrm{H}, \mathrm{x})$ will either both be accepting or both not be accepted.

Minimal Finite Automata

- Example:
- States A and E are equivalent
- $\delta(\mathrm{A}, 1)=\delta(\mathrm{E}, 1)=\mathrm{F}$
$\hat{\delta} \quad(\mathrm{A}, 1 \mathrm{x}) \hat{\bar{\sigma}} \quad(\mathrm{E}, 1 \mathrm{x})$ for any x
- $\delta(\mathrm{A}, 0)=\mathrm{B}, \delta(\mathrm{E}, 0)=\mathrm{H}$
$-B$ and H are equivalent
$\hat{\delta} \quad(\mathrm{A}, 0 \mathrm{x})$ an $\hat{\delta} \quad(\mathrm{E}, 0 \mathrm{x})$ will either both be accepting or both be non-accepting.

Minimal Finite Automata

- Recursive algorithm to find distinguishable states:
- Consider pairs $\{\mathrm{p}, \mathrm{q}\}$
- For each pair we will determine whether p is distinguishable from q
- Said another way, for each pair $\{p, q\}$ we will determine if p is not equivalent to q .

Minimal Finite Automata

- Recursive algorithm
- Base case:
- If p is accepting and q is non-accepting then $\{p, q\}$ is distinguishable
- Induction
- For some pair $\{p, q\}$ if
$-\delta(p, a)=r$ and $\delta(q, a)=s$ and
- $\{\mathrm{r}, \mathrm{s}\}$ is distinguishable then
$-\{p, q\}$ is distinguishable

Minimal Finite Automata

- Let's take a look at this induction step
- If $r=\delta(p, a)$ and $s=\delta(q, a)$ are distinguishable, then there is a string x such that $\delta(\mathrm{r}, \mathrm{x})$ is accepting and $\delta(\mathrm{s}, \mathrm{x})$ is not, or visa-versa
- Then for $\mathrm{x}, \delta(\mathrm{p}, \mathrm{ax})$ is accepting and $\delta(\mathrm{q}, \mathrm{ax})$ is not, or visa-versa.
- We found a string, ax such that $\delta(\mathrm{p}, \mathrm{ax})$ is accepting and (q, ax) is not (or visa-versa), thus $\{p, q\}$ are distinguishable

Minimal Finite Automata

- Distinguishable table by using a table with each table cell representing a pair of states. A mark in a table cell indicates that the two states of the pair are distinguishable.

Minimal Finite Automata

- Restatement of algorithm
- For all pairs $\{p, q\}$ such that p is accepting and q is not, mark the equivalent cell in the table.
- Consider each pair $\{p, q\}$ not yet marked.
- Determine $\mathrm{r}=\delta(\mathrm{p}, \mathrm{a})$ and $\mathrm{s}=\delta(\mathrm{q}, \mathrm{a})$ for each a in Σ.
- If $\{\mathrm{r}, \mathrm{s}\}$ is marked, then mark $\{\mathrm{p}, \mathrm{q}\}$
- Repeat until no further cells are marked during an iteration of the algorithm

Minimal Finite Automata

- Example
$\delta(\mathrm{A}, 0)=\mathrm{B}$
$\delta(\mathrm{B}, 0)=\mathrm{G} \quad \delta(\mathrm{B}, 1)=\underline{\mathbf{C}}$
$\delta(\mathrm{C}, 0)=\mathrm{A} \quad \delta(\mathrm{C}, 1)=\underline{\mathbf{C}}$
$\delta(\mathrm{D}, 0)=\underline{\mathbf{C}} \quad \delta(\mathrm{D}, 1)=\mathrm{G}$
$\delta(\mathrm{E}, 0)=\mathrm{H} \quad \delta(\mathrm{E}, 1)=\mathrm{F}$
$\delta(\mathrm{F}, 0)=\underline{\mathbf{C}} \quad \delta(\mathrm{F}, 1)=\mathrm{G}$
$\delta(\mathrm{G}, 0)=\mathrm{G} \quad \delta(\mathrm{G}, 1)=\mathrm{E}$
$\delta(\mathrm{H}, 0)=\mathrm{G} \quad \delta(\mathrm{H}, 1)=\underline{\mathbf{C}}$

Minimal Finite Automata

- Example

Minimal Finite Automata

- Let's try on our example

A B C D EF G

Minimal Finite Automata

- Once our table is complete
- All unmarked cells correspond to state pairs that are not-distinguishable, I.e. they are equivalent
- Combine equivalent states into one
- Transitions from equivalent states should map to equivalent states

Minimal Finite Automata

B	X						E and A are equivalent
C	x	x					
D	X	X	x				H and B are equivalent
E		x	x	x			
F	X	X	X		x		D and F are equivalent
G	x	x	X	X	X	x	
H	X	\bigcirc	X	X	X	x	

Minimal Finite Automata

- Combine H and B

Minimal Finite Automata

- Combine E and A

Minimal Finite Automata

- Combine D and F

Minimal Finite Automata

- Let's revisit the question:
- Given 2 specifications of regular languages, do the specifications describe the same language.
- Create a MFA for each language
- Compare the MFAs on a state by state basis.

For the mathematically minded

- Equivalence relations
- The nice thing about equivalence relations
- It partitions the elements of your set into a number of distinct and disjoint subsets.
- Each subset is called an equivalence class

Minimal Finite Automata

- What have we done?
- Defined the notion of equivalent states
- Developed a recursive algorithm to determine which states in an FA are equivalent
- Combine equivalent states to create FA with minimal number of states.
- Questions?

For the mathematically minded

- Let's go back to our Discrete Math
- Relation
- Defines relationship between objects
- Usually given as an ordered pair,
- (x, y) where $x, y \in$ some Set
- Equivalence relation
- Reflective: (a, a)
- Symmetric: if (a, b) then (b, a)
- Transitive: if (a, b) and (b, c) then (a, c)

For the mathematically minded

- MFA and Equivalence Classes
- State equivalence can be shown to be an equivalence relation on a language.
- This relation partitions the strings of L into a number of equivalence classes.
- Each equivalence class corresponds to a state in the MFA.

Minimal Finite Automata

- Questions?
- Let's take a break

