
1

Context Free Languages

Parse Trees and Ambiguity

Plan for 2nd half

• Ambiguous Grammars and Parse Trees

• Questions?

Text note

• We will not be covering the conversions /
proofs .

Parse Trees

• Graphical means to illustrate a derivation of
a string from a grammar
– Root of the tree = start variable
– Interior nodes = other variables

• Children of nodes = application of a production rule

– Leaf nodes = Terminal symbols

Another example

• Find a CFG to describe:
– L = {aibjck | i = k}

• S → B (1)
• S → aSc (2)
• B → bB (3)
• B → ε (4)

– Can also write as
• S → B | aSc
• B → bB | ε

Another example

• Let’s derive a string from L: aabbcc
– S ⇒ aSc rule 2

S ⇒ aaScc rule 2
S ⇒ aaBcc rule 1
S ⇒ aabBcc rule 3
S ⇒ aabbBcc rule 3
S ⇒ aabb ε cc rule 4

= aabbcc

2

Parse Tree

• An inorder traversal of
the tree will give the
the string derived.

S

a S c

a S c

B

Bb

Bb

ε

Rule 2

Rule 2

Rule 1

Rule 3

Rule 3

Rule 4

Recall our example from last
time

• Defining the grammar for algebraic
expressions – Production rules
– S → S + S (1)

S → S – S (2)
S → S * S (3)
S → S / S (4)
S → (S) (5)
S → a (6)

One more example

• Show derivation for a + a * a
– S ⇒ S + S rule 1

S ⇒ a + S rule 6
S ⇒ a + S * S rule 3
S ⇒ a + a * S rule 6
S ⇒ a + a * a rule 6

Parse Tree

– S ⇒ S + S
rule 1
S ⇒ a + S
rule 6
S ⇒ a + S * S
rule 3
S ⇒ a + a * S
rule 6
S ⇒ a + a * a
rule 6

S

S + S

a S * S

a a

One more example

• Another derivation for a + a * a
– S ⇒ S * S rule 3

S ⇒ S * a rule 6
S ⇒ S + S * a rule 1
S ⇒ a + S * a rule 6
S ⇒ a + a * a rule 6

Parse Tree

– S ⇒ S * S
rule 3
S ⇒ S * a
rule 6
S ⇒ S + S * a
rule 1
S ⇒ a + S * a
rule 6
S ⇒ a + a * a
rule 6

S

S * S

S + S a

a a

3

Parse trees

S

S + S

a S * S

a a

S

S * S

S + S a

a a

Same string, 2 derivations

Ambiguity

• A CFG is said to be ambiguous if there is at
least 1 string in L(G) having two or more
distinct derivations.

Famous programming language ambiguity

• Dangling else
– <stmt> → if (<expr>) <stmt> |

if (<expr>) <stmt> else <stmt> |
<some_other_stmt>

if (expr1) if (expr2) f(); else g();

To which if does the else belong?

Famous programming language ambiguity

stmt

if expr)(stmt else stmt

if (expr) stmt

expr1 g(x);

f(x);expr2

In this derivation, the else belongs to the 1st if
if (expr1) if (expr2) f(); else g();

Famous programming language ambiguity

stmt

if expr)(stmt

else stmtif (expr) stmt

expr1

g(x);f(x);expr2

if (expr1) if (expr2) f(); else g();

Famous programming language ambiguity

• A way to fix this
– <stmt> → <s1> | <s2>

<s1> → if (<expr>) <s1> else <s1> | <otherstmt>
<s2> → if (<expr>) <stmt> |

if (<expr>) <s1> else <s2>

<s1> represents if statements with matching else
<s2> represent if statements with at least 1 unmatched if
The <s1> in the rule for <s2> will assure that all statements between

if and else will not have a dangling else.

4

Famous programming language ambiguity

if expr)(s1

else s1if (expr) s1

expr1

g(x);f(x);expr2

s2
stmt

if (expr1) if (expr2) f(); else g();

Ambiguity

• Some languages are inherently ambiguous
– All possible grammars that generate the

language are ambiguous
• Unfortunately, there is no algorithm that can

tells us whether a grammar is ambiguous or
not.

Ambiguity

• Showing a grammar is ambiguous is easy
– Find a string x in the L(G) that has two

derivations
• Showing a particular grammar is not

ambiguous is usually difficult.
• Showing that any grammar is not

ambiguous is not possible.

Derivations

• Leftmost derivations
– A leftmost derivation is one where the leftmost

variable in the current string is always the first
to get replaced via a production rule.

– A rightmost derivation is one where the
rightmost variable in the current string is
always the first to get replaced via a production
rule.

Derivations

S

S + S

a S + S

a a

S

S + S

S + S a

a a

rightmost derivation leftmost derivation

a + a + a

Ambiguity

• As it turns out (we won’t prove this)
– In unambiguous grammars,leftmost derivations

will always be unique.
– In unambiguous grammars,rightmost

derivations will always be unique.

5

Removing ambiguities

• Since some languages are inherently ambiguous
– This cannot always be done

• In fact,
– We can/will show there is no “algorithm” for

determining if a CFG is ambiguous

• However,
– On a case by case basis, ambiguities can be eliminated

Example

• Abbreviated grammar for algebraic
expressions – Production rules
– S → S + S (1)

S → S * S (2)
S → (S) (3)
S → a (4)

Example

• This grammar has two problems
1. Precedence of operators is not respected

a * a + a should be interpreted as (a*a) + a

2. Sequence of identical operators can be
grouped either from the left or the right
a + a + a can be interpreted as either (a+a)+a or a + (a

+ a)

Example

• Solution
– Introduce some new variables

• Factor – expression that cannot be broken up by either * or +
– a
– (S)

• Term – expression that cannot be broken up by +
– All Factors
– T * F

• Expression – all possible expression
– All Terms
– S + T

Example

• Our new grammar
– S → S + T | T
– T → T * F | F
– F → (S) | a

• Note that
– all recursion is leftmost
– * has higher precedent than +
– a + a + a + a * a is interpreted as

• ((a+a) + a) + (a*a)

Example
S

S + T

S + T

S + T

a

T * F

F a

a

F

F a

a

a + a + a + a * a

6

Example

• It can be shown
– That every string x, that is generated by this

new grammar, has only one leftmost derivation
– As such this new grammar is unambiguous
– Done using induction on the |x|.

Summary

• Ambiguity
– A grammar is ambiguous if there is a string generated

by the grammar that has two distinct derivations.
– Some languages are inherently ambiguous

• All grammars that generate the language are ambiguous

– There is no algorithm to determine if any given
grammar is ambiguous

• Proving a grammar to be ambiguous is easy
• Proving that a grammar is not is hard.

– Questions?

Summary – Today

• Context Free Grammars
• Parse Trees and Ambiguity

Next time

• Exam 1
• CFG Problem Session

