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The Pumping Lemma
The Lemma & Decision/Closure Properties

Before We Start

• Any questions?

Languages

• Future Exam Question
– What is a language?
– What is a class of languages?

Context Free Languages

• Context Free Languages(CFL) is the next 
class of languages outside of Regular 
Languages:
– Means for defining: Context Free Grammar
– Machine for accepting: Pushdown Automata

Plan for today

• The Return of the Pumping Lemma
• Closure Properties and Decision Properties 

for CFLs

Now our picture looks like

Regular Languages

Finite 
Languages

Deterministic Context Free Languages

Context Free Languages

Is there anything out here?
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Just when you thought it was safe

• Return of the Pumping Lemma
– But before we start that!

– When we last left our CFGs…

Chomsky Normal Form

• Chomsky Normal Form
– A context free grammar is in Chomsky Normal 

Form (CNF) if every production is of the form:
• A → BC
• A → a

• Where A,B, and C are variables and a is a terminal.

The Pumping Lemma for RL

• Statement of the pumping lemma for RL
– Let L be a regular language.
– Then there exists a constant n (which varies 

for different languages), such that for every 
string x ∈ L with |x| ≥ n, x can be expressed 
as x = uvw such that:
1. |v| > 0
2. |uv| ≤ n
3. For all k ≥ 0, the string uvkw is also in L.

The Pumping Lemma for RL

p0 pi
u = a1a2…ai w = aj+1aj+2…am

v = ai+1ai+2…aj

The Pumping Lemma for CFLs

• With CFLs
– strings are  distinguished by their derivation (or 

parse trees) based on the productions of a CFG.
– The idea behind the Pumping Lemma for CFLs:

• If a string is long enough, then at least one variable 
in it’s derivation will have to be repeated.

• We can repeatedly reapply productions for the 
repeated variable (“pump you up”) and the resultant 
string will also be in the language

The Pumping Lemma for CFLs
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The Pumping Lemma for CFLs

• S ⇒* vAz ⇒* vwAyz ⇒* vwxyz

– So A ⇒* x but also A ⇒* wAy
– We can then write instead:

• S ⇒* vAz ⇒* vwAyz ⇒* vw2Ay2z ⇒* vw3Ay3z
• And so on…

The Pumping Lemma for CFLs

The Pumping Lemma for CFLs

• How long is long enough?
– Recall Chomsky Normal Form

• A context free grammar is in Chomsky Normal 
Form (CNF) if every production is of the form:

– A → BC
– A → a

• Where A,B, and C are variables and a is a terminal.

The Pumping Lemma for CFLs

The Pumping Lemma for CFLs

• The parse tree for a grammar in CNF will 
be a binary tree
– A binary tree having more than 2k-1 leaf nodes 

must have a height (longest path) > k.
– If we let k be the number of number of 

variables in our grammar, then 
• For any string x, where |x| > 2k 

• At least one variable in the longest path will be 
repeated.

The Pumping Lemma for CFLs
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The Pumping Lemma for CFLs

• Let L be a CFL.  Then there is an integer n 
so that for all strings u, where |u| ≥ n,  u can 
be expressed as u = vwxyz where
– |wy| > 0
– |wxy| ≤ n
– For any m ≥ 0, vwmxymz ∈ L

• n = 2p+1 where p = number of variables

The Pumping Lemma for CFLs

• The real strength of the pumping lemma is 
proving that languages are not context free
– Proof by contradiction

• Assume that the language to be tested is a CFL
• Use the pumping lemma to come to a contradiction
• Original assumption about the language being a 

CFL is false

• You cannot prove a language to be a CFL 
using the Pumping Lemma!!!!

The Pumping Lemma for CFLs

• The Pumping Lemma game
– To show that a language L is not a CFL

• Assume L is context free
• Choose an “appropriate” string x in L
• Express x = uvwxy following rules of pumping lemma
• Show that uvkwxkz is not in L, for some k
• The above contradicts the Pumping Lemma
• Our assumption that L is context free is wrong
• L must not be context free

The Pumping Lemma for CFLs

• Example:
– L = { aibici | i ≥ 1 }
– Strings of the form abc where number of a’s, b’s and 

c’s are equal
– Let’s play!

– Assume that L is context free. Then by the pumping 
lemma all strings u with |u| ≥ n can be expressed as u =
vwxyz and

• |wy| > 0
• |wxy| ≤ n
• For any m ≥ 0, vwmxymz ∈ L

The Pumping Lemma for CFLs

• Example
– L = { aibici | i ≥ 1 }

– Choose an appropriate u = anbncn = vwxyz
– Since |wxy| ≤ n then wxy must consists of

• All a’s or all b’s or all c’s
• Some a’s and some b’s
• Some b’s and some c’s

The Pumping Lemma for CFLs

• In all three cases
– vw2xy2z will not have an equal number of a’s 

b’s and c’s.
– Pumping Lemma says vw2xy2z ∈L
– Can’t contradict the pumping lemma!
– Our original assumption must be wrong.

– L is not context-free.
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The Pumping Lemma for CFLs

• By the same argument (same choice of u), 
we can show that:

– L = { x ∈ { a,b,c}* | na(x) = nb(x) = nc(x) }

• Is not context free

The Pumping Lemma for CFLs

• Another Example:
– L = { aibjck | i < j and i < k }
– Number of a’s is less than the number of b’s and the 

number of c’s
– Let’s play!

– Assume that L is context free. Then by the pumping 
lemma all strings u with |u| ≥ n can be expressed as u =
vwxyz and

• |wy| > 0
• |wxy| ≤ n
• For any m ≥ 0, vwmxymz ∈ L

The Pumping Lemma for CFLs

• Example
– L = { aibjck | i < j and i < k }

– Choose an appropriate u = anbn+1cn+1 = vwxyz
– Since |wxy| ≤ n then wxy must consists of

• Case 1: All a’s or all b’s or all c’s
• Case 2: Some a’s and some b’s
• Case 3: Some b’s and some c’s

The Pumping Lemma for CFLs

• Let’s consider each case individually:
– Case 1: All a’s or all b’s or all c’s

• If wxy consists of all a’s then there will be k such 
that when we pump w and y k times, the number of 
a’s will be greater than n+1

• If wxy consists of all b’s then vw0xy0z will contain 
the same number or less b’s than a’s

• If wxy consists of all c’s then vw0xy0z will contain 
the same number or less c’s than a’s

The Pumping Lemma for CFLs

• Let’s consider each case individually:
– Case 2: Some a’s and some b’s

• If wxy consists of only a’s and b’s then there will be 
k such that when we pump w and y k times, the 
number of a’s will be greater than n+1 (# of c’s)

• Relationship between a’s and b’s might be 
maintained, but not the relationship between a’s and 
c’s

The Pumping Lemma for CFLs

• Let’s consider each case individually:
– Case 2: Some b’s and some c’s

• If wxy consists of only b’s and c’s then vw0xy0z will 
contain the same number or less c’s or b’s than a’s
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The Pumping Lemma for CFLs

• In all cases
– We found a “pumped” (or unpumped) string that the 

pumping lemma said should be in the langauge but did 
not maintain the relationship of a’s to b’s and c’s as 
specified in the language.

– Can’t contradict the pumping lemma!
– Our original assumption must be wrong.

– L is not context-free.

The Pumping Lemma for CFLs

• By the same argument (same choice of u), 
we can show that:

– L = { x ∈ { a,b,c}* | na(x) <  nb(x) and na(x) < 
nc(x) }

• Is not context free

The Pumping Lemma for CFLs

• Questions?

Closure Properties

• We already seen that CFLs are closed under:
– Union
– Concatenation 
– Kleene Star

• Regular Languages are also closed under
– Intersection
– Complementation
– Difference

• What about Context Free Languages?

Closure Properties

• Sorry, Charlie
– CFLs are not closed under intersection

– Meaning:
• If L1 and L2 are CFLs then L1 ∩ L2 is not 

necessarily a CFL.

Closure Properties

• CFLs are not closed under intersection
– Example:

• L1 = {aibjck | i < j }
• L2 = {aibjck | i < k }

• Are both CFLs
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Closure Properties

• CFLs are not closed under intersection
L2 = {aibjck | i < k }

S → AC
A → aAc | B
B → bB | ε
C → cC | c

L1 = {aibjck | i < j }

S → ABC
A → aAb | ε
B → bB | b
C → cC | ε

Closure Properties

• CFLs are not closed under intersection
– L1 ∩ L2 = {aibjck | i < j and i < k }

– Which we just showed to be non-context free.

Closure Properties

• Sorry, Charlie
– CFLs are not closed under complement
– Why?

• L1 ∩ L2 = (L1’ ∪ L2’)’

Closure Properties

• Sorry, Charlie
– CFLs are not closed under difference
– Why?

• L’ = Σ* - L
• We know Σ* is regular, and as such is also a CFL.
• If CFLs were closed under difference, then Σ* - L = 

L’ would always be a CFL
• But we showed that CFLs are not closed under 

complement

Closure Properties

• What went wrong?
– Can’t we apply the same construction as we did 

for the complement of RLs?
• Reverse the accepting / non-accepting states

• PDAs can “crash”.  
– I.e Fail by having no place to go.
– PDAs can “crash” in accepting or non-accepting state
– Making non-accepting states accepting will not handle 

crashes.

Closure Properties

• What went wrong?
– Can’t we apply the same construction as we did 

for the intersection of RLs?
• The states of M are an ordered pair (p, q) where p ∈

Q1 and q ∈ Q2

• Informally, the states of M will represent the current 
states of M1 and M2 at each simultaneous move of 
the machines.
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Closure Properties

• What went wrong?
– Can’t we apply the same construction as we did 

for the intersection of RLs?
• The problem is the stack.
• Although we could try the same thing for PDAs and 

have a combined machine keep track of where both 
PDAs are at any one time.

• We can’t keep track of what’s on both stacks at any 
given tine.

Closure Properties

• However, if one of the CFLs does not use 
the stack (I.e. it is an FA), then we can build 
a PDA that accepts L1 ∩ L2 .

• In other words:
– If L1 is a context free language and L2 is a 

regular language, then L1 ∩ L2 is context free.

Closure Properties

• Basic idea:
– Like with the FA construction, let the states of the new 

machine keep track of the states of the PDA accepting 
L1 (M1) and the FA accepting L2 (M2).

– Our single stack of the new machine will operate the 
same as the stack of the PDA accepting L1

– Accepting states will be all states that contain both an 
accepting state from M1 and M2.

Closure Properties

• Basic idea

Closure Properties

• Summary
– CFLs are closed under

• Union, Concatenation, Kleene Star

– CFLs are NOT closed under
• Intersection, Difference, Complement

– But
• The intersection of a CFL with a RL is a CFL

Decision Properties

• Questions we can ask about context free 
languages and how we answer such 
questions.
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Decision Properties

• Given regular languages, specified in any one of 
the four means, can we develop algorithms that 
answer the following questions:
1. Is a given string in the language? 
2. Is the language empty? 
3. Is the language finite?

Decision Properties

• Membership 
– Unlike FAs, we can’t just run the string through 

the machine and see where it goes since PDAs 
are non-deterministic.

• Must consider all possible paths

Decision Properties

• Membership
– Instead, start with your grammar in CNF.

• The proof of the pumping lemma states that the 
longest derivation path of a string of size n will be 
2n – 1. 

• Systematically generate all derivations with one 
step, then two steps, …, then 2n – 1 steps where the 
length of the string tested = n.  If one of the 
derivations derive x, return true, else return false. 

Decision Properties

• Emptiness
– By the proof of the pumping lemma, if a 

grammar in CNF has p states, the longest 
string, not subject to the pumping lemma will 
have length n = 2p+1.

• Systematically generate all strings with lengths less 
than n.

• Test each one using membership algorithm
• If all fail and ε ∉ L, then L is empty
• Else L is not empty.

Decision Properties

• Finiteness
– Just as with RLs, a language is infinite if there is a 

string x with length between n and 2n
• With RLs n = number of states in an FA
• With CFLs n = 2p+1 where p is the number of variables in the 

CFG 

• Systematically generate all strings with lengths between n and 
2n

• Run through membership algorithm
• If one passes, L is infinite, if all fail, L is finite

Decision Properties

• Questions?
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Summary

• Pumping Lemma for CFLs
• Closure Properties
• Decision Properties

Now our picture looks like

Regular Languages

Finite 
Languages

Deterministic Context Free Languages

Context Free Languages

Is there anything out here? YES

Next Time

• Next classes of languages
• However, 

– We start with the machine rather than the 
language

– Move beyond simple language acceptance into 
the realm of computation.

• Enter…The Turing Machine!!!


