The Pumping Lemma

The Lemma & Decision/Closure Properties

Before We Start

* Any questions?

Languages

* Future Exam Question
— What is a language?
— What is a class of languages?

Context Free Languages

» Context Free Languages(CFL) is the next
class of languages outside of Regular
Languages:

— Means for defining: Context Free Grammar
— Machine for accepting: Pushdown Automata

Plan for today

» The Return of the Pumping Lemma

* Closure Properties and Decision Properties
for CFLs

Now our picture looks like

Regular Languages

Is there anything out here?

Just when you thought it was safe

* Return of the Pumping Lemma
— But before we start that!

— When we last left our CFGs...

Chomsky Normal Form

» Chomsky Normal Form
— A context free grammar is in Chomsky Normal
Form (CNF) if every production is of the form:
*« A—>BC
*cA—>a

* Where A,B, and C are variables and a is a terminal.

The Pumping Lemma for RL

» Statement of the pumping lemma for RL

— Let L be a regular language.

— Then there exists a constant n (which varies
for different languages), such that for every
string x € L with |x| > n, x can be expressed
as x = uvw such that:

1. v[>0
2. fuv|<n
3. Forallk >0, the string uvkw is also in L.

The Pumping Lemma for RL

NV E BBz

U=a2,..a 8 w=a, a,,.a
@ ?;1\ +19+2 m

The Pumping Lemma for CFLs

» With CFLs

— strings are distinguished by their derivation (or
parse trees) based on the productions of a CFG.

— The idea behind the Pumping Lemma for CFLs:

« Ifa string is long enough, then at least one variable
in it’s derivation will have to be repeated.

* We can repeatedly reapply productions for the
repeated variable (“pump you up”) and the resultant
string will also be in the language

The Pumping Lemma for CFLs

The Pumping Lemma for CFLs
s S="VvAz =" vwAyz =" vwxyz

—So A =" x but also A =" wAy

— We can then write instead:
* S =" vAz =" vwAyz =" vw?Ay’z =" vwiAyz
* And so on...

The Pumping Lemma for CFLs

5 /\\\\.
'/\\ / A \\.\
A /A\ AN
7 Pt \\\ ; X ‘\‘ »\
4 A g e RN Y
P AN ; z
Vow x ¥y 2
75
A .
// LA Y

The Pumping Lemma for CFLs

* How long is long enough?
— Recall Chomsky Normal Form

* A context free grammar is in Chomsky Normal
Form (CNF) if every production is of the form:
- A—>BC
-A—>a

* Where A,B, and C are variables and a is a terminal.

The Pumping Lemma for CFLs

5

L
I\ AN
[l f< |
'/Q<\
I

a b

The Pumping Lemma for CFLs

* The parse tree for a grammar in CNF will
be a binary tree
— A binary tree having more than 2k! leaf nodes
must have a height (longest path) > k.
— If we let k be the number of number of
variables in our grammar, then
* For any string x, where |x| > 2k
* At least one variable in the longest path will be
repeated.

The Pumping Lemma for CFLs

The Pumping Lemma for CFLs

» Let L be a CFL. Then there is an integer n
so that for all strings u, where [u| > n, u can
be expressed as u = vwxyz where
- |lwy|>0

— [wxy| <n
— For any m > 0, vw™xy"z € L

» n=2P"" where p = number of variables

The Pumping Lemma for CFLs

* The real strength of the pumping lemma is
proving that languages are not context free
— Proof by contradiction
+ Assume that the language to be tested is a CFL
 Use the pumping lemma to come to a contradiction
* Original assumption about the language being a
CFL is false
* You cannot prove a language to be a CFL
using the Pumping Lemma!!!!

The Pumping Lemma for CFLs

* The Pumping Lemma game
— To show that a language L is not a CFL

« Assume L is context free

Choose an “appropriate” string x in L

.

Express x = uvwxy following rules of pumping lemma

Show that uvkwx¥z is not in L, for some k

The above contradicts the Pumping Lemma

.

Our assumption that L is context free is wrong

L must not be context free

The Pumping Lemma for CFLs

* Example:
— L= {abici|ix>1}
— Strings of the form abc where number of a’s, b’s and
¢’s are equal
— Let’s play!

— Assume that L is context free. Then by the pumping
lemma all strings u with [u| > n can be expressed as u =
vwxyz and

¢ [wyl>0
o |wxy|<n
* Forany m >0, vw™xy"z € L

The Pumping Lemma for CFLs

* Example
~L={abici|i>1}

— Choose an appropriate u = a"b"c" = vwxyz
— Since [wxy| < n then wxy must consists of
* Alla’sorall b’sor all ¢’s
* Some a’s and some b’s
* Some b’s and some ¢’s

The Pumping Lemma for CFLs

* In all three cases

— vw2xy?z will not have an equal number of a’s
b’sand c’s.

— Pumping Lemma says vw?xy?z €L
— Can’t contradict the pumping lemma!

— Our original assumption must be wrong.

— L is not context-free.

The Pumping Lemma for CFLs

By the same argument (same choice of u),
we can show that:

—L={xe {abc} | n(x)=n,(x)=n(x) }

* Is not context free

The Pumping Lemma for CFLs

* Another Example:
— L={abick|i<jandi<k}
— Number of a’s is less than the number of b’s and the
number of ¢’s
— Let’s play!

— Assume that L is context free. Then by the pumping
lemma all strings u with [u| > n can be expressed as u =
vwxyz and

* [wyl>0
* [wxy|<n
* Forany m >0, vw™xy"z € L

The Pumping Lemma for CFLs

» Example
—L={abick|i<jandi<k}

— Choose an appropriate u = a"b"" ¢! = ywxyz
— Since |[wxy| < n then wxy must consists of

* Case 1: Alla’sorall b’s or all ¢’s

» Case 2: Some a’s and some b’s

* Case 3: Some b’s and some ¢’s

The Pumping Lemma for CFLs

 Let’s consider each case individually:

—Case 1: Alla’s orall b’s or all ¢’s

« If wxy consists of all a’s then there will be k such
that when we pump w and y k times, the number of
a’s will be greater than n+1

* If wxy consists of all b’s then vwxy%z will contain
the same number or less b’s than a’s

* If wxy consists of all ¢’s then vw’xy®z will contain
the same number or less ¢’s than a’s

The Pumping Lemma for CFLs

 Let’s consider each case individually:

— Case 2: Some a’s and some b’s
* If wxy consists of only a’s and b’s then there will be
k such that when we pump w and y k times, the
number of a’s will be greater than n+1 (# of ¢’s)
* Relationship between a’s and b’s might be
maintained, but not the relationship between a’s and
c’s

The Pumping Lemma for CFLs

* Let’s consider each case individually:
— Case 2: Some b’s and some ¢’s

« If wxy consists of only b’s and ¢’s then vw’xy’z will
contain the same number or less ¢’s or b’s than a’s

The Pumping Lemma for CFLs

¢ In all cases

— We found a “pumped” (or unpumped) string that the
pumping lemma said should be in the langauge but did
not maintain the relationship of a’s to b’s and ¢’s as
specified in the language.

— Can’t contradict the pumping lemma!
— Our original assumption must be wrong.

— L is not context-free.

The Pumping Lemma for CFLs

* By the same argument (same choice of u),
we can show that:

—-L={xe {ab,c}"|n,(x) < nyx)and n,(x) <

n,(x) }

 Is not context free

The Pumping Lemma for CFLs

* Questions?

Closure Properties

* We already seen that CFLs are closed under:
— Union
— Concatenation
— Kleene Star
* Regular Languages are also closed under
— Intersection
— Complementation
— Difference

» What about Context Free Languages?

Closure Properties

* Sorry, Charlie

— CFLs are not closed under intersection

— Meaning:
* IfL, and L, are CFLs then L, " L, is not
necessarily a CFL.

Closure Properties

e CFLs are not closed under intersection

— Example:
L= {abick|i<j}
» L, = {aibick|i<k}

 Are both CFLs

Closure Properties

» CFLs are not closed under intersection
L, = {abick|i<j} |L,= {albick|i<k}

S — ABC S— AC

A —>aAb|e A —>aAc|B
B—>DbB|b B—->bBle
C—ocCle C—o>cClc

Closure Properties

» CFLs are not closed under intersection
—L,n L,={abick|i<jandi<k}

— Which we just showed to be non-context free.

Closure Properties

* Sorry, Charlie
— CFLs are not closed under complement
— Why?
‘L, nL,=(L,ULy)

Closure Properties

* Sorry, Charlie
— CFLs are not closed under difference
— Why?
e L’=3%"-L
» We know X" is regular, and as such is also a CFL.
« If CFLs were closed under difference, then X*- L =
L’ would always be a CFL

* But we showed that CFLs are not closed under
complement

Closure Properties

* What went wrong?
— Can’t we apply the same construction as we did
for the complement of RLs?
* Reverse the accepting / non-accepting states

* PDASs can “crash”.
— Le Fail by having no place to go.
— PDAs can “crash” in accepting or non-accepting state
— Making non-accepting states accepting will not handle
crashes.

Closure Properties

* What went wrong?
— Can’t we apply the same construction as we did
for the intersection of RLs?
* The states of M are an ordered pair (p, q) where p €
Q andq € Q,
* Informally, the states of M will represent the current
states of M, and M, at each simultaneous move of
the machines.

Closure Properties

* What went wrong?
— Can’t we apply the same construction as we did
for the intersection of RLs?

* The problem is the stack.

* Although we could try the same thing for PDAs and
have a combined machine keep track of where both
PDAs are at any one time.

* We can’t keep track of what’s on both stacks at any
given tine.

Closure Properties

» However, if one of the CFLs does not use

the stack (L.e. it is an FA), then we can build
a PDA thataccepts L, NL,.

In other words:
—If L, is a context free language and L, is a
regular language, then L, n L, is context free.

Closure Properties

* Basic idea:
— Like with the FA construction, let the states of the new
machine keep track of the states of the PDA accepting

L, (M,) and the FA accepting L, (M,).

— Our single stack of the new machine will operate the
same as the stack of the PDA accepting L,

— Accepting states will be all states that contain both an
accepting state from M, and M,

Closure Properties

» Basic idea

| — .,.[FA. 5 |
Tnput — - I "l’\‘:;'
pul 1 —u| AND } Acce|
| L /’—r’ r\tju:\ﬁ“l
| L PDA | o
| state
| I— 1__‘ 1
(-]
':_ Stack
[_ |
—_

Closure Properties

* Summary
— CFLs are closed under
» Union, Concatenation, Kleene Star
— CFLs are NOT closed under

* Intersection, Difference, Complement

— But
¢ The intersection of a CFL with a RL is a CFL

Decision Properties

* Questions we can ask about context free
languages and how we answer such
questions.

Decision Properties

» Given regular languages, specified in any one of
the four means, can we develop algorithms that
answer the following questions:

1.1s a given string in the language?
2.1s the language empty?
3.1s the language finite?

Decision Properties

* Membership
— Unlike FAs, we can’t just run the string through
the machine and see where it goes since PDAs
are non-deterministic.
* Must consider all possible paths

Decision Properties

* Membership

— Instead, start with your grammar in CNF.

* The proof of the pumping lemma states that the
longest derivation path of a string of size n will be
2n—1.

* Systematically generate all derivations with one
step, then two steps, ..., then 2n — 1 steps where the
length of the string tested = n. If one of the
derivations derive x, return true, else return false.

Decision Properties

* Emptiness
— By the proof of the pumping lemma, if a
grammar in CNF has p states, the longest
string, not subject to the pumping lemma will
have length n = 2r*1,

« Systematically generate all strings with lengths less
than n.

* Test each one using membership algorithm
« Ifall fail and € ¢ L, then L is empty
« Else L is not empty.

Decision Properties

* Finiteness
— Just as with RLs, a language is infinite if there is a
string x with length between n and 2n
With RLs n = number of states in an FA

With CFLs n = 2°*! where p is the number of variables in the
CFG

.

Systematically generate all strings with lengths between n and
2n

Run through membership algorithm
If one passes, L is infinite, if all fail, L is finite

.

Decision Properties

* Questions?

Summary

* Pumping Lemma for CFLs
* Closure Properties
* Decision Properties

Now our picture looks like

Regular Languages

i %
Is there anything out here? YES

Next Time

* Next classes of languages
* However,
— We start with the machine rather than the
language
— Move beyond simple language acceptance into
the realm of computation.

* Enter...The Turing Machine!!!

