The Pumping Lemma

The Lemma & Decision/Closure Properties

Before We Start

• Any questions?

Languages

- Future Exam Question
 - What is a language?
 - What is a class of languages?

Context Free Languages

- Context Free Languages(CFL) is the next class of languages outside of Regular Languages:
 - Means for defining: Context Free Grammar
 - Machine for accepting: Pushdown Automata

Plan for today

- The Return of the Pumping Lemma
- Closure Properties and Decision Properties for CFLs

Just when you thought it was safe

- Return of the Pumping Lemma - But before we start that!
 - When we last left our CFGs...

Chomsky Normal Form

- Chomsky Normal Form
 - A context free grammar is in Chomsky Normal Form (CNF) if every production is of the form:
 - $A \rightarrow BC$
 - $A \rightarrow a$
 - Where A,B, and C are variables and a is a terminal.

The Pumping Lemma for RL

- Statement of the pumping lemma for RL
 - Let L be a regular language.
 - Then there exists a constant n (which varies for different languages), such that for every string x ∈ L with |x| ≥ n, x can be expressed as x = uvw such that:
 - 1. |v| > 0
 - $2. |uv| \le n$
 - 3. For all $k \ge 0$, the string $uv^k w$ is also in L.

- With CFLs
 - strings are distinguished by their derivation (or parse trees) based on the productions of a CFG.
 - The idea behind the Pumping Lemma for CFLs:
 - If a string is long enough, then at least one variable in it's derivation will have to be repeated.
 - We can repeatedly reapply productions for the repeated variable ("pump you up") and the resultant string will also be in the language

- The parse tree for a grammar in CNF will be a binary tree
 - A binary tree having more than 2^{k-1} leaf nodes must have a height (longest path) > k.
 - If we let k be the number of number of variables in our grammar, then
 - For any string x, where $|x| > 2^k$
 - At least one variable in the longest path will be repeated.

- Let L be a CFL. Then there is an integer n so that for all strings u, where $|u| \ge n$, u can be expressed as u = vwxyz where
 - -|wy| > 0
 - $-|wxy| \le n$
 - $\text{ For any } m \geq 0, \, vw^m xy^m z \, \in \, L$
- $n = 2^{p+1}$ where p = number of variables

The Pumping Lemma for CFLs

- The <u>real</u> strength of the pumping lemma is proving that languages are not context free – Proof by contradiction
 - Assume that the language to be tested is a CFL
 - Use the pumping lemma to come to a contradiction
 - Original assumption about the language being a CFL is false
- You <u>cannot</u> prove a language <u>to be</u> a CFL using the Pumping Lemma!!!!

The Pumping Lemma for CFLs

- The Pumping Lemma game
 - To show that a language L is not a CFL
 - · Assume L is context free
 - Choose an "appropriate" string x in L
 - Express x = uvwxy following rules of pumping lemma
 - Show that uv^kwx^kz is not in L, for some k
 - The above contradicts the Pumping Lemma
 - Our assumption that L is context free is wrong
 - L must not be context free

The Pumping Lemma for CFLs

- Example:
 - $-L = \{ a^i b^i c^i \mid i \ge 1 \}$
 - Strings of the form abc where number of a's, b's and c's are equal
 - Let's play!
 - Assume that L is context free. Then by the pumping lemma all strings u with $|u| \geq n$ can be expressed as u = vwxyz and
 - |wy| > 0
 - $|wxy| \le n$
 - $\bullet \ \ For \ any \ m \geq 0, \ vw^m xy^m z \in L$

The Pumping Lemma for CFLs

- Example
 - $-L = \{ a^i b^i c^i \mid i \ge 1 \}$
 - Choose an appropriate $u = a^n b^n c^n = v w x y z$
 - Since $|wxy| \le n$ then wxy must consists of
 - All a's or all b's or all c's
 - Some a's and some b's
 - Some b's and some c's

- In all three cases
 - $-vw^2xy^2z$ will not have an equal number of a's b's and c's.
 - Pumping Lemma says $vw^2xy^2z \in L$
 - Can't contradict the pumping lemma!
 - Our original assumption must be wrong.
 - L is not context-free.

- By the same argument (same choice of u), we can show that:
 - $-L = \{ \ x \in \ \{ \ a,b,c \}^* \ | \ n_a(x) = n_b(x) = n_c(x) \ \}$
- · Is not context free

The Pumping Lemma for CFLs

• Another Example:

- $L = \{ a^i b^j c^k \mid i < j \text{ and } i < k \}$
- Number of a's is less than the number of b's and the number of c's
- Let's play!
- Assume that L is context free. Then by the pumping lemma all strings u with |u| ≥ n can be expressed as u = vwxyz and
 - |wy| > 0
 - $|wxy| \le n$
 - $\bullet \ \ For \ any \ m \geq 0, \ vw^m xy^m z \ \in \ L$

The Pumping Lemma for CFLs

- Example
 - $L = \{ a^i b^j c^k \mid i < j \text{ and } i < k \}$
 - Choose an appropriate $u = a^n b^{n+1} c^{n+1} = vwxyz$
 - Since $|wxy| \le n$ then wxy must consists of
 - Case 1: All a's or all b's or all c's
 - Case 2: Some a's and some b's
 - Case 3: Some b's and some c's

The Pumping Lemma for CFLs

- Let's consider each case individually:
 - Case 1: All a's or all b's or all c's
 - If wxy consists of all a's then there will be k such that when we pump w and y k times, the number of a's will be greater than n+1
 - If wxy consists of all b's then vw^0xy^0z will contain the same number or less b's than a's
 - If wxy consists of all c's then vw⁰xy⁰z will contain the same number or less c's than a's

The Pumping Lemma for CFLs

- Let's consider each case individually:
 - Case 2: Some a's and some b's
 - If wxy consists of only a's and b's then there will be k such that when we pump w and y k times, the number of a's will be greater than n+1 (# of c's)
 - Relationship between a's and b's might be maintained, but not the relationship between a's and c's

- Let's consider each case individually:
 - Case 2: Some b's and some c's
 - If wxy consists of only b's and c's then vw⁰xy⁰z will contain the same number or less c's or b's than a's

- · In all cases
 - We found a "pumped" (or unpumped) string that the pumping lemma said should be in the langauge but did not maintain the relationship of a's to b's and c's as specified in the language.
 - Can't contradict the pumping lemma!
 - Our original assumption must be wrong.
 - L is not context-free.

The Pumping Lemma for CFLs

- By the same argument (same choice of u), we can show that:
 - $\begin{array}{l} \ L = \{ \ x \ \in \ \{ \ a,b,c \}^* \ | \ n_a(x) < \ n_b(x) \ and \ n_a(x) < \\ n_c(x) \ \} \end{array}$
- Is not context free

The Pumping Lemma for CFLs

• Questions?

Closure Properties

- We already seen that CFLs are closed under:
 - Union
 - Concatenation
 - Kleene Star
- Regular Languages are also closed under
 - Intersection
 - Complementation
 - Difference
- What about Context Free Languages?

Closure Properties

- · Sorry, Charlie
 - CFLs are not closed under intersection
 - Meaning:
 - If L_1 and L_2 are CFLs then $L_1 \cap L_2$ is not necessarily a CFL.

Closure Properties

- CFLs are not closed under intersection
 - Example:
 - $L_1 = \{a^i b^j c^k \mid i \leq j \}$
 - $L_2 = \{a^i b^j c^k \mid i \le k\}$
 - Are both CFLs

Closure Properties

• CFLs are <u>not</u> closed under intersection

 $\begin{array}{c|c} L_1 = \{a^i b^j c^k \mid i < j \} \\ S \rightarrow ABC \\ A \rightarrow aAb \mid \epsilon \\ B \rightarrow bB \mid b \\ C \rightarrow cC \mid \epsilon \end{array} \begin{array}{c} S \rightarrow AC \\ A \rightarrow aAc \mid B \\ B \rightarrow bB \mid \epsilon \\ C \rightarrow cC \mid c \end{array}$

Closure Properties

• CFLs are <u>not</u> closed under intersection $-L_1 \cap L_2 = \{a^{ib}ic^k \mid i < j \text{ and } i < k \}$

- Which we just showed to be non-context free.

Closure Properties

- Sorry, Charlie
 - CFLs are not closed under complement
 - Why?
 - $L_1 \cap L_2 = (L_1' \cup L_2')'$

Closure Properties

- Sorry, Charlie
 - CFLs are not closed under difference
 - Why?
 - L' = Σ^* L
 - We know Σ^* is regular, and as such is also a CFL.
 - If CFLs were closed under difference, then Σ^{*} L = L^{*} would always be a CFL
 - But we showed that CFLs are not closed under complement

Closure Properties

- What went wrong?
 - Can't we apply the same construction as we did for the complement of RLs?
 - Reverse the accepting / non-accepting states
 - · PDAs can "crash".
 - I.e Fail by having no place to go.
 - PDAs can "crash" in accepting or non-accepting state
 - Making non-accepting states accepting will not handle crashes.

Closure Properties

- What went wrong?
 - Can't we apply the same construction as we did for the intersection of RLs?
 - The states of M are an ordered pair (p,q) where $p \in Q_1$ and $q \in Q_2$
 - Informally, the states of M will represent the current states of M_1 and M_2 at each simultaneous move of the machines.

Closure Properties

- What went wrong?
 - Can't we apply the same construction as we did for the intersection of RLs?
 - The problem is the stack.
 - Although we could try the same thing for PDAs and have a combined machine keep track of where both PDAs are at any one time.
 - We can't keep track of what's on both stacks at any given tine.

Closure Properties

- However, if one of the CFLs does not use the stack (I.e. it is an FA), then we can build a PDA that accepts $L_1 \cap L_2$.
- In other words:
 - If L_1 is a context free language and L_2 is a regular language, then $L_1 \cap L_2$ is context free.

Closure Properties

- · Basic idea:
 - Like with the FA construction, let the states of the new machine keep track of the states of the PDA accepting L₁ (M₁) and the FA accepting L₂ (M₂).
 - Our single stack of the new machine will operate the same as the stack of the PDA accepting ${\rm L}_1$
 - Accepting states will be all states that contain both an accepting state from M_1 and M_2

Closure Properties

• Summary

- CFLs are closed under
 - Union, Concatenation, Kleene Star
- CFLs are NOT closed under
 - · Intersection, Difference, Complement
- But
 - The intersection of a CFL with a RL is a CFL

Decision Properties

• Questions we can ask about context free languages and how we answer such questions.

Decision Properties

- Given regular languages, specified in any one of the four means, can we develop algorithms that answer the following questions:
 - 1. Is a given string in the language?
 - 2. Is the language empty?
 - 3. Is the language finite?

Decision Properties

- Membership
 - Unlike FAs, we can't just run the string through the machine and see where it goes since PDAs are non-deterministic.
 - · Must consider all possible paths

Decision Properties

- Membership
 - Instead, start with your grammar in CNF.
 - The proof of the pumping lemma states that the longest derivation path of a string of size n will be 2n 1.
 - Systematically generate all derivations with one step, then two steps, ..., then 2n 1 steps where the length of the string tested = n. If one of the derivations derive x, return true, else return false.

Decision Properties

• Emptiness

- By the proof of the pumping lemma, if a grammar in CNF has p states, the longest string, not subject to the pumping lemma will have length $n = 2^{p+1}$.
 - Systematically generate all strings with lengths less than n.
 - · Test each one using membership algorithm
 - If all fail and $\epsilon \not\in L,$ then L is empty
 - Else L is not empty.

Decision Properties

Finiteness

- Just as with RLs, a language is infinite if there is a string x with length between n and 2n
 - With RLs n = number of states in an FA
 - With CFLs $n=2^{p+1}$ where p is the number of variables in the CFG
 - Systematically generate all strings with lengths between n and 2n
 - Run through membership algorithm
 - · If one passes, L is infinite, if all fail, L is finite

Decision Properties

• Questions?

Summary

- Pumping Lemma for CFLs
- Closure Properties
- Decision Properties

Now our picture looks like

Next Time

- Next classes of languages
- However,
 - We start with the machine rather than the language
 - Move beyond simple language acceptance into the realm of computation.
- Enter...The Turing Machine!!!