Context Free Languages IV

Pushdown Automata

Pushdown Automata

Input tape
1 2
\o 3
° @
State machine Stack

Plan for today

¢ Introduction to Pushdown Automata

Pushdown Automata

* The stack
— The stack has its own alphabet

— Included in this alphabet is a special symbol
used to indicate an empty stack. (Z,)

* This special symbol should not be removed from the
stack.

* Note that the basic PDA is non-
deterministic!

Pushdown Automata

* A pushdown automata (PDA) is essentially:

— An NDFA- A with a stack
— A “move” of a PDA will depend upon

* Current state of the machine

* Current symbol being read in

* Current symbol popped off the top of the stack
— With each “move”, the machine can

* Move into a new state

* Push symbols on to the stack

Pushdown Automata

e Let’s formalize this:

— A pushdown automata (PDA) is a 7-tuple:
*M=(Q,2,T,qyZ, A, &) where
— Q = finite set of states
— X = tape alphabet
— I = stack alphabet (may have symbols in common w/ X)
— q,0Q = start state
— Z,0 = initial stack symbol
— A O Q = set of accepting states
— 0= transition function

Pushdown Automata

¢ About this transition function &:

— During a move of a PDA:

« At most one character is read from the input tape
— A transitions are okay

« The topmost character is popped from the stack
— Unless itis Z,

« The machine will move to a new state based on:
— The character read from the tape
— The character popped off the stack
— The current state of the machine

0 or more symbols from the stack alphabet are pushed onto the

stack.

Pushdown Automata

* Configuration of a PDA

— Gives the current “configuration” of the
machine

— (p, x, a) where
* pis the current state

* X is a string indicating what remains to be read on
the tape

* 0 is the current contents of the stack.

Pushdown Automata

* Formally:
—08:Qx(Z0 {A})xT - (finite subsets of Q x ['")

— Domain:
* Q=state
* (Z 0 {A}) = symbol read off tape
« [=symbol popped off stack
— Range
* Q =new state
« "= symbols pushed onto the stack

Pushdown Automata

* Move of a PDA:
— We can describe a single move of a PDA:

*(@x)@,y B
o If:
—x=ay,a=yX,B=YX
» And
- 8(q, x, y) includes (p, Y) or
- 8(q, A\, y) includes (p, Y) andx =y.

Pushdown Automata

* Example:
- 6(q5aaa):(psaa)

* Meaning:
— When in state q,
— Reading in an a from the tape
— With an a popped off the stack
* The machine will
— Go into state p

g

— Push the string “aa” onto the stack

Pushdown Automata

¢ Moves of a PDA
— We can write:
* (@, %,)" (p,y, B)
o If

— You can get from one configuration to the other by
applying 0 or more moves.

Pushdown Automata

» Strings accepted by a PDA
—LetM=(Q, %, T, q Zy A, 8) beaPDA
—x is accepted by M if

* Qo X, Zo) =" (. A\, B)

* Where
-qOA
- BT *

Pushdown Automata

* Let’s look at an example:
—L={xex"|xO{ab}"}

— Basic idea for building a PDA
* Read chars off the tape until you reach the ‘c’.
* As you read chars push them on the stack
« After reading the c, match the chars read with the chars popped
off the stack until all chars are read
« If at any point the char read does not match the char popped,
the machine “crashes”

Pushdown Automata

 Strings accepted by a PDA

— Start at (q, X, Z)
« Start state q,
« X on the input tape
« Empty stack

— End with (q, A, B)
« End in an accepting state
« All characters of x have been read
« Some string on the stack (doesn’t matter what).

— Acceptance by “final state”

Pushdown Automata

* Let’s look at an example:
—L={xex"|x0{ab}"}

— The PDA will have 4 states
« State 0 (initial) : reading before the ‘c’
« State 1: read the ‘¢’
« State 2 :read after ‘c’, comparing chars

« State 3: (accepting): move only after all chars read
and stack empty

Pushdown Automata

* The language accepted by a PDA
—LetM=(Q,Z, T, qy Zy, A, d) be a PDA
— The language accepted by M,
* Denoted L(M) is
* The set of all strings x that are accepted by M.

Pushdown Automata

* Let’s look at an example:
—L={xex"|x0{ab}"}

b,b/A

b.2,/b7, ©.2,/7, NZy/Z, \aalA
) | caia Aala O

e.b/b A Ab/b Q _@
do) & AZIZ

bb/bb/)

a,b/abv

ba/ba & a/m

PDA Example

» Transition for abcba
— (qq, abcba, Z) = (qq, beba, a) // push a
- > (qq, cba, ba) //push b
- — (q,, ba,ba) //goto 1
- — (q,, ba, ba) // A trans
- — (q,, a, @) // pop b
- = (q, N\, Z) // pop a
- = (q3 N\, Z2) /I Accept!

Pushdown Automata

 Let’s look at another example:
-L={xx"|x0O{ab}"}

— Basic idea for building a PDA
* Much like last example, except

— This time we don’t know when to start popping and
comparing
— Since PDAs are non-deterministic, this is not a problem

PDA Example

* Transition for abcb
— (qq, abcb, Z) - (qg, beb, a) // push a
- = (qg, cb, ba) //pushb
- — (q,, b, ba) //goto 1
- — (qy, b, ba) // Atrans
- = (q, A, a) // pop b
- Nowhere to go // Reject!

Pushdown Automata

» Let’s look at another example:
—L={xx"|x0O{ab}"}

— The PDA will have 3 states
« State 0 (initial) : reading before the center of string
« State 1: read after center of string, comparing chars
« State 2 (accepting): after all chars read, stack should be empty
— The machine can choose to go from state 0 to state 1 at
any time:
+ Will result in many “wrong” set of moves

« All you need is one “right” set of moves for a string to be
accepted.

Pushdown Automata

* I bet you’re wondering if JFLAP can handle
PDAs!

— Yes, it can...
— Let’s take a look.

Pushdown Automata

* Let’s look at an example:
-L={xx'|x0{ab}"}

b,7,/b7, AZy2, ‘ :://’\\
a,Zy/aZ, Aala
Ab/b Q @
9o Gl nz/z
bb/bb/)

a,b/abv

ba/ba & a/m

PDA Example

» Let’s see a bad transition set for abba
— (qq, abba, Z) - (q, bba, a) //pusha
- — (qg, ba, ba) //pushb
- — (qy, a, bba) //pushb
- — (q,, a, bba) // A trans
- Nowhere to go // Reject!

Pushdown Automata

* Questions?

PDA Example

» Let’s see a good transition set for abba
—(qq, abba, Z) - (q, bba, a) //pusha
- = (qg, ba, ba) //pushb
- (q;, ba, ba) // A trans
- —(q,aa) //popb
- —(Qq,N,Z) //popa
- = (q, N, Z) // Accept!

Deterministic PDAs

» As mentioned before
— Our basic PDA in non-deterministic
— We can define a Deterministic PDA (DPDA) as
follows:
s LetM=(Q, %, T,qg Zy A, 8 beaPDA
¢ M is deterministic if:

— d(q, a, X) has at most one element
—1f6(q, A\, X) # 0 then 8 (q, a, X) = [forall a [&

Pushdown Automata

* “Let’s go to the video tape”
— Actually JFLAP...

Deterministic PDAs

* In other words:

— There is no configuration where the machine
has a “choice” of moves
* Each transition has at most 1 element.

* If you can make a A-transition from a state with a
given symbol on the stack,

— You cannot make that same transition on any tape input
symbol.

Deterministic PDAs

* A language L is a deterministic context-free
language (DCFL) if there is a DPA that
accepts L

PDA Example

» Example:
-L={x0{ab}"|n,(x)>n,(x)}

b,Z,/bZ,
a,Zy/aZ,
®
Yo
b.b/bb/
a,b/A)

INon-determinism

PDA Example

* Example:
-L={x0{ab}"n(x)>n,(x)}

— First using a PDA:
« Let the stack store the “excess” of one symbol over another
— If more a’s have been read than b’s, a’s will be on the stack, and
via versa
— If ais on the stack and you read a b, simple match the a with the

— If ais on the stack and you read an a, we have one more extraa —
Push it on the stack.

— An empty stack means the number of a’s and b’s are equal.

PDA Example

* Let’s try on JFLAP

PDA Example

» Example:
-L={x0{ab}"[n,(x)>n,(x)}

— The PDA will have 2 states:
» State 0 (start) : where all the work gets done
« State 1 (accepting) : one you’re in here, the machine
StOpS.
— The machine can “choose” to go into state 1 on
a /\ transition whenever an a is on the stack.

PDA Example

Example:
-L={x0{ab}"[n,(x)>n,(x)}

— Removing the non-determinism :
« Let the stack store 1 minus the “excess” of one
symbol over another
« The state will determine whether you have excess
a’s or excess b’s

PDA Example

» Example:
-L={x0{ab}"n,(x)>n,(x)}

— The PDA will have 2 states:
« State 0 (start) : when n, (x) < n, (x)
— Equality or surplus of b’s
« State 1 (accepting) : when n, (x) >n, (x)
— Surplus of a’s

Now you might be wondering...

We know that all DCFLs are CFLs

Is there anything in here?

CFL

PDA Example

» Example:
-L={x0{ab}"[n(x)>n,(x)}

a,a/aa
b,Zo/bZ(/\ m“"‘

b;’bb/,,b ,lz \ a,7,/Z, %
w @

b, 2/ Z,

It can be shown...

 That the language pal:
—pal={x0{ab}"|x=x"}

 Cannot be accepted by any DPDA.
* See Theorem 7.1 in book for proof.

PDA Example

* Let’s try on JFLAP

It can also be shown

 That all regular languages can be accepted
by a DPDA.

— Since an FA (deterministic) is essentially a
DPDA that doesn’t make use of the stack.

Now our picture looks like Next time

» Equivalence of CFLs and PDAs

Regular Languages

Determinism vs. Non-Determinism

» Comparing FAs and PDAs
— DPDAs allow for A-transitions
— DPDAs allow for no moves

— FAs and NDFAs are equivalent
— PDAs and DPDAs are not equivalent

Summary

* Pushdown Automata
— NDFA-As with a stack

— Deterministic PDAs
* The two are NOT equivalent

— JFLAP comes to the rescue yet again!

— Questions?

