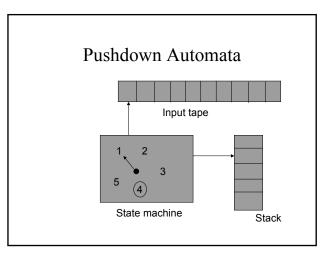
Context Free Languages IV

Pushdown Automata



Plan for today

• Introduction to Pushdown Automata

Pushdown Automata

- The stack
 - The stack has its own alphabet
 - Included in this alphabet is a special symbol used to indicate an empty stack. (Z₀)
 This special symbol should not be removed from the stack.
- Note that the basic PDA is nondeterministic!

Pushdown Automata

- A pushdown automata (PDA) is essentially:
 - An NDFA- Λ with a stack
 - A "move" of a PDA will depend upon
 - Current state of the machine
 - Current symbol being read in
 - Current symbol popped off the top of the stack
 - With each "move", the machine can
 - Move into a new state
 - Push symbols on to the stack

Pushdown Automata

- Let's formalize this:
 - A pushdown automata (PDA) is a 7-tuple:
 - $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ where
 - -Q =finite set of states
 - $-\Sigma =$ tape alphabet
 - Γ = stack alphabet (may have symbols in common w/ $\Sigma)$

1

- $q_0 \in Q = start state$
- $Z_0 \in \Gamma =$ initial stack symbol
- $-A \subseteq Q$ = set of accepting states
- $-\delta =$ transition function

Pushdown Automata

- About this transition function $\delta :$
 - During a move of a PDA:
 - At most one character is read from the input tape

 – Λ transitions are okay
 - · The topmost character is popped from the stack
 - Unless it is Z₀
 The machine will move to a new state based on:
 - The machine will move to a new state based of — The character read from the tape
 - The character popped off the stack
 - The current state of the machine
 - 0 or more symbols from the stack alphabet are pushed onto the stack.

Pushdown Automata

- · Configuration of a PDA
 - Gives the current "configuration" of the machine
 - $-(p, x, \alpha)$ where
 - p is the current state
 - x is a string indicating what remains to be read on the tape
 - α is the current contents of the stack.

Pushdown Automata

- Formally:
 - $-\delta: Q \ge (\Sigma \cup \{\Lambda\}) \ge \Gamma \rightarrow (\text{finite subsets of } Q \ge \Gamma^*)$
 - Domain:
 - Q = state
 - $(\Sigma \cup \{\Lambda\})$ = symbol read off tape
 - Γ = symbol popped off stack
 - Range
 - Q = new state
 - Γ^* = symbols pushed onto the stack

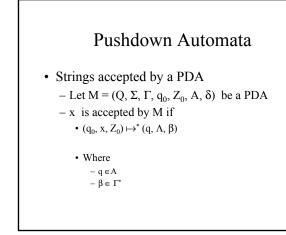
Pushdown Automata

- Move of a PDA:
 - We can describe a single move of a PDA:
 - $(q, x, \alpha) \mapsto (p, y, \beta)$
 - If:
 - $-x = ay, \alpha = \gamma X, \beta = YX$
 - » And
 - $-\delta(q, x, \gamma)$ includes (p, Y) or
 - $-\delta(q, \Lambda, \gamma)$ includes (p, Y) and x = y.

Pushdown Automata

- Example:
 - $-\delta(q, a, a) = (p, aa)$
 - Meaning:
 - When in state q,
 - Reading in an a from the tape
 - With an a popped off the stack
 - The machine will
 - Go into state p
 - Push the string "aa" onto the stack

Pushdown Automata • Moves of a PDA – We can write: • $(q, x, \alpha) \mapsto^* (p, y, \beta)$ • If – You can get from one configuration to the other by applying 0 or more moves.



Pushdown Automata

- Let's look at an example:
 - $L = \{ x c x^r \mid x \in \{ a, b \}^* \}$

- Basic idea for building a PDA

- Read chars off the tape until you reach the 'c'.
- As you read chars push them on the stack
- After reading the c, match the chars read with the chars popped off the stack until all chars are read
- If at any point the char read does not match the char popped, the machine "crashes"

Pushdown Automata

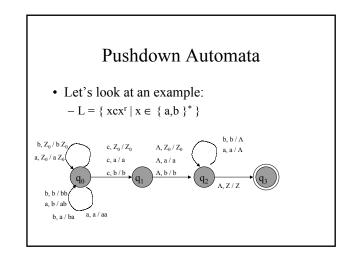
- Strings accepted by a PDA
 - Start at (q₀, x, Z₀)
 - Start state q₀
 - X on the input tape
 - Empty stack
 - End with (q, Λ, β)
 - · End in an accepting state
 - All characters of x have been read
 - Some string on the stack (doesn't matter what).
 - Acceptance by "final state"

Pushdown Automata

- Let's look at an example: - $L = \{ xcx^r | x \in \{ a, b \}^* \}$
 - The PDA will have 4 states
 - State 0 (initial) : reading before the 'c'
 - State 1: read the 'c'
 - State 2 :read after 'c', comparing chars
 - State 3: (accepting): move only after all chars read and stack empty

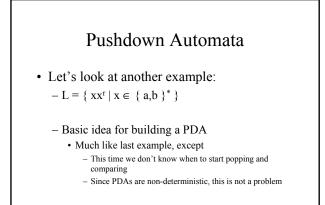
Pushdown Automata

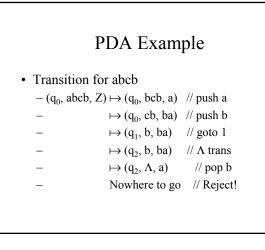
- The language accepted by a PDA
 - Let $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ be a PDA
 - The language accepted by M,
 - Denoted L(M) is
 - The set of all strings x that are accepted by M.

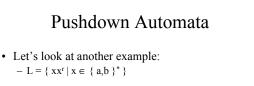


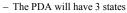
PDA Example		
 Transition 	n for abcba	
$-(q_0, abcba, Z) \mapsto (q_0, bcba, a) // pu$		// push a
_	\mapsto (q ₀ , cba, ba)	// push b
_	\mapsto (q ₁ , ba, ba)	// goto 1
_	\mapsto (q ₂ , ba, ba)	// Λ trans
_	\mapsto (q ₂ , a, a)	// pop b
_	\mapsto (q ₂ , Λ , Z)	// pop a
_	\mapsto (q ₃ , Λ , Z)	// Accept!

Г









- State 0 (initial) : reading before the center of string
- State 1: read after center of string, comparing chars
- State 2 (accepting): after all chars read, stack should be empty
- The machine can choose to go from state 0 to state 1 at any time:
 - Will result in many "wrong" set of moves
 - All you need is one "right" set of moves for a string to be accepted.

 Pushdown Automata

 • I bet you're wondering if JFLAP can handle

 PDAs!

 - Yes, it can...

 - Let's take a look.

 b, Z_0 / b Z_0

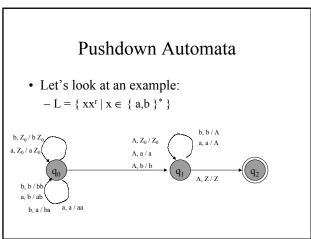
 a, Z_0 / a Z_0

 b, b / bb

 b, b / bb

 b, b / bb

 b, b / bb



PDA Example• Let's see a bad transition set for abba $-(q_0, abba, Z) \mapsto (q_0, bba, a) // push a$ $- \mapsto (q_0, ba, ba) // push b$ $- \mapsto (q_0, a, bba) // push b$ $- \mapsto (q_1, a, bba) // A trans$ $- \qquad Nowhere to go // Reject!$

Pushdown Automata

• Questions?

PDA Example

- Let's see a good transition set for abba
 - $\ (q_0, \ abba, \ Z) \mapsto (q_0, \ bba, \ a) \quad // \ push \ a$
 - \mapsto (q₀, ba, ba) // push b
 - \mapsto (q₁, ba, ba) // Λ trans
 - $\qquad \qquad \mapsto (q_1, a, a) \qquad // \text{ pop } b$
 - $\qquad \qquad \mapsto (q_1, \Lambda, Z) \qquad // \text{ pop a}$
 - $\mapsto (q_2, \Lambda, Z) \quad // \text{Accept!}$

Deterministic PDAs

- · As mentioned before
 - Our basic PDA in non-deterministic
 - We can define a Deterministic PDA (DPDA) as follows:
 - Let $M = (Q, \Sigma, \Gamma, q_0, Z_0, A, \delta)$ be a PDA
 - M is deterministic if:
 - $-\delta(q, a, X)$ has <u>at most</u> one element
 - $\ If \ \delta \ (q, \ \Lambda, \ X) \neq \varnothing \ then \ \delta \ (q, \ a, \ X) = \varnothing \ for \ all \ a \in \ \Sigma$

Pushdown Automata

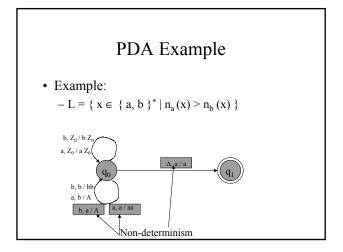
• "Let's go to the video tape" – Actually JFLAP...

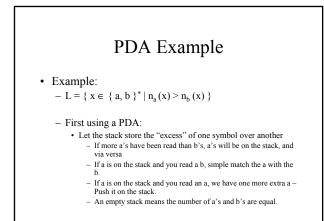
Deterministic PDAs

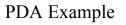
- In other words:
 - There is no configuration where the machine has a "choice" of moves
 - Each transition has at most 1 element.
 - If you can make a Λ -transition from a state with a given symbol on the stack,
 - You cannot make that same transition on any tape input symbol.

Deterministic PDAs

• A language L is a <u>deterministic context-free</u> <u>language (DCFL)</u> if there is a DPA that accepts L







• Let's try on JFLAP

PDA Example

 $-L = \{ x \in \{ a, b \}^* | n_a(x) > n_b(x) \}$

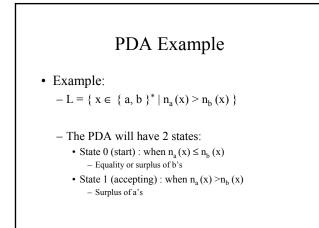
- The PDA will have 2 states:
 - State 0 (start) : where all the work gets done
 - State 1 (accepting) : one you're in here, the machine
- stops. - The machine can "choose" to go into state 1 on
- a Λ transition whenever an a is on the stack.

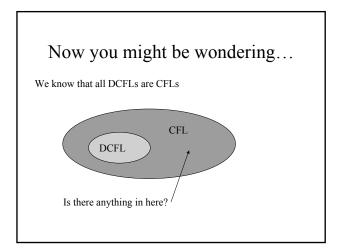
PDA Example

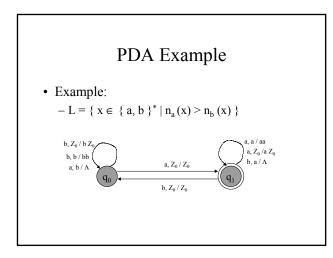
Example:

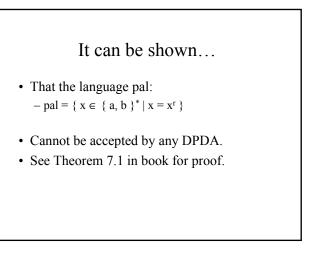
$$-L = \{ x \in \{ a, b \}^* | n_a(x) > n_b(x) \}$$

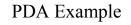
- Removing the non-determinism :
 - Let the stack store 1 minus the "excess" of one symbol over another
 - The state will determine whether you have excess a's or excess b's



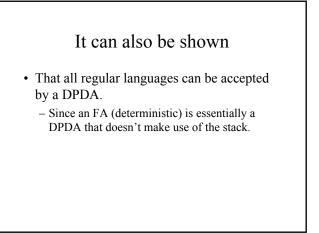


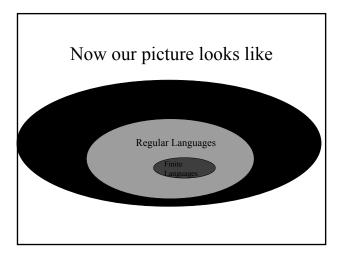






• Let's try on JFLAP





Next time

• Equivalence of CFLs and PDAs

Determinism vs. Non-Determinism

- Comparing FAs and PDAs
 - DPDAs allow for Λ -transitions
 - DPDAs allow for no moves
 - FAs and NDFAs are equivalent
 - PDAs and DPDAs are not equivalent

Summary

- Pushdown Automata
 - NDFA-As with a stack
 - Deterministic PDAs
 - The two are NOT equivalent
 - JFLAP comes to the rescue yet again!
 - Questions?