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Context Free Languages IV

Pushdown Automata

Plan for today

• Introduction to Pushdown Automata

Pushdown Automata

• A pushdown automata (PDA) is essentially:
– An NDFA- Λ with a stack
– A “move” of a PDA will depend upon

• Current state of the machine
• Current symbol being read in
• Current symbol popped off the top of the stack

– With each “move”, the machine can
• Move into a new state
• Push symbols on to the stack 

Pushdown Automata
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State machine
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Stack

Pushdown Automata

• The stack
– The stack has its own alphabet
– Included in this alphabet is a special symbol 

used to indicate an empty stack. (Z0)
• This special symbol should not be removed from the 

stack.

• Note that the basic PDA is non-
deterministic!

Pushdown Automata

• Let’s formalize this:
– A pushdown automata (PDA) is a 7-tuple: 

• M = (Q, Σ, Γ, q0, Z0, A, δ) where
– Q = finite set of states
– Σ = tape alphabet
– Γ = stack alphabet (may have symbols in common w/ Σ)
– q0 ∈ Q = start state
– Z0 ∈ Γ = initial stack symbol
– A ⊆ Q = set of accepting states
– δ = transition function
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Pushdown Automata

• About this transition function δ:
– During a move of a PDA:

• At most one character is read from the input tape
– Λ transitions are okay

• The topmost character is popped from the stack
– Unless it is Z0

• The machine will move to a new state based on:
– The character read from the tape
– The character popped off the stack
– The current state of the machine

• 0 or more symbols from the stack alphabet are pushed onto the 
stack.

Pushdown Automata

• Formally:
– δ: Q x (Σ ∪ {Λ}) x Γ → (finite subsets of Q x Γ*)

– Domain:
• Q = state
• (Σ ∪ {Λ}) = symbol read off tape
• Γ = symbol popped off stack

– Range
• Q = new state
• Γ* = symbols pushed onto the stack

Pushdown Automata

• Example:
– δ (q, a, a ) = ( p, aa)

• Meaning:
– When in state q,
– Reading in an a from the tape
– With an a popped off the stack

• The machine will
– Go into state p
– Push the string “aa” onto the stack

Pushdown Automata

• Configuration of a PDA
– Gives the current “configuration” of the 

machine

– (p, x, α) where
• p is the current state
• x is a string indicating what remains to be read on 

the tape
• α is the current contents of the stack.

Pushdown Automata

• Move of a PDA:
– We can describe a single move of a PDA: 

• (q, x, α) a (p, y, β)
• If:

– x = ay, α = γX, β = YX
» And

– δ (q, x, γ) includes (p, Y)  or
– δ (q, Λ, γ) includes (p, Y)  and x = y.

Pushdown Automata

• Moves of a PDA
– We can write:

• (q, x, α) a* (p, y, β)
• If

– You can get from one configuration to the other by 
applying 0 or more moves.
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Pushdown Automata

• Strings accepted by a PDA
– Let M = (Q, Σ, Γ, q0, Z0, A, δ)  be a PDA
– x  is accepted by M if

• (q0, x, Z0) a* (q, Λ, β)

• Where
– q ∈ A
– β ∈ Γ *

Pushdown Automata

• Strings accepted by a PDA
– Start at (q0, x, Z0) 

• Start state q0

• X on the input tape
• Empty stack

– End with (q, Λ, β)
• End in an accepting state
• All characters of x have been read
• Some string on the stack (doesn’t matter what).

– Acceptance by “final state”

Pushdown Automata

• The language accepted by a PDA
– Let M = (Q, Σ, Γ, q0, Z0, A, δ)  be a PDA
– The language accepted by M,

• Denoted L(M) is
• The set of all strings x that are accepted by M.

Pushdown Automata

• Let’s look at an example:
– L = { xcxr | x ∈ { a,b }* }

– Basic idea for building a PDA
• Read chars off the tape until you reach the ‘c’.
• As you read chars push them on the stack
• After reading the c, match the chars read with the chars popped 

off the stack until all chars are read
• If at any point the char read does not match the char popped, 

the machine “crashes”

Pushdown Automata

• Let’s look at an example:
– L = { xcxr | x ∈ { a,b }* }

– The PDA will have 4 states
• State 0 (initial) : reading before the ‘c’
• State 1: read the ‘c’
• State 2 :read after ‘c’, comparing chars
• State 3: (accepting): move only after all chars read 

and stack empty

Pushdown Automata

• Let’s look at an example:
– L = { xcxr | x ∈ { a,b }* }

q0 q1 q2

a, Z0 / a Z0

b, Z0 / b Z0

b, a / ba

b, b / bb
a, b / ab

a, a / aa

c, Z0 / Z0

c, a / a

c, b / b

Λ, Z0 / Z0

Λ, a / a

Λ, b / b

a, a / Λ
b, b / Λ

q3
Λ, Z / Z
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PDA Example

• Transition for abcba
– (q0, abcba, Z) a (q0, bcba, a)   // push a
– a (q0, cba, ba)   // push b
– a (q1, ba, ba)     // goto 1
– a (q2, ba, ba)     // Λ trans
– a (q2, a, a)         // pop b
– a (q2, Λ, Z)        // pop a 
– a (q3, Λ, Z)        // Accept!

PDA Example

• Transition for abcb
– (q0, abcb, Z) a (q0, bcb, a)   // push a
– a (q0, cb, ba)   // push b
– a (q1, b, ba)     // goto 1
– a (q2, b, ba)     // Λ trans
– a (q2, Λ, a)         // pop b
– Nowhere to go    // Reject!

Pushdown Automata

• I bet you’re wondering if JFLAP can handle 
PDAs!
– Yes, it can…
– Let’s take a look.

Pushdown Automata

• Let’s look at another example:
– L = { xxr | x ∈ { a,b }* }

– Basic idea for building a PDA
• Much like last example, except

– This time we don’t know when to start popping and 
comparing

– Since PDAs are non-deterministic, this is not a problem

Pushdown Automata

• Let’s look at another example:
– L = { xxr | x ∈ { a,b }* }

– The PDA will have 3 states
• State 0 (initial) : reading before the center of string
• State 1: read after center of string, comparing chars
• State 2 (accepting): after all chars read, stack should be empty

– The machine can choose to go from state 0 to state 1 at 
any time:

• Will result in many “wrong” set of moves
• All you need is one “right” set of moves for a string to be 

accepted.

Pushdown Automata

• Let’s look at an example:
– L = { xxr | x ∈ { a,b }* }

q0 q1

a, Z0 / a Z0

b, Z0 / b Z0

b, a / ba

b, b / bb
a, b / ab

a, a / aa

Λ, Z0 / Z0

Λ, a / a

Λ, b / b

a, a / Λ
b, b / Λ

q2
Λ, Z / Z
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PDA Example

• Let’s see a bad transition set for abba
– (q0, abba, Z) a (q0, bba, a)   // push a
– a (q0, ba, ba)   // push b
– a (q0, a, bba)   // push b
– a (q1, a, bba)   // Λ trans
– Nowhere to go // Reject!

PDA Example

• Let’s see a good transition set for abba
– (q0, abba, Z) a (q0, bba, a)   // push a
– a (q0, ba, ba)   // push b
– a (q1, ba, ba)   // Λ trans
– a (q1, a, a)       // pop b
– a (q1, Λ, Z)      // pop a 
– a (q2, Λ, Z) // Accept!

Pushdown Automata

• “Let’s go to the video tape”
– Actually JFLAP…

Pushdown Automata

• Questions?

Deterministic PDAs

• As mentioned before
– Our basic PDA in non-deterministic
– We can define a Deterministic PDA (DPDA) as 

follows:
• Let M = (Q, Σ, Γ, q0, Z0, A, δ)  be a PDA
• M is deterministic if:

– δ (q, a, X) has at most one element
– If δ (q, Λ, X) ≠ ∅ then δ (q, a, X) = ∅ for all a ∈ Σ

Deterministic PDAs

• In other words:
– There is no configuration where the machine 

has a “choice” of moves
• Each transition has at most 1 element.
• If you can make a Λ-transition from a state with a 

given symbol on the stack,
– You cannot make that same transition on any tape input 

symbol.
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Deterministic PDAs

• A language L is a deterministic context-free 
language (DCFL) if there is a DPA that 
accepts L

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– First using a PDA:
• Let the stack store the “excess” of one symbol over another

– If more a’s have been read than b’s, a’s will be on the stack, and 
via versa

– If a is on the stack and you read a b, simple match the a with the 
b. 

– If a is on the stack and you read an a, we have one more extra a –
Push it on the stack.

– An empty stack means the number of a’s and b’s are equal.

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– The PDA will have 2 states:
• State 0 (start) : where all the work gets done
• State 1 (accepting) : one you’re in here, the machine 

stops.
– The machine can “choose” to go into state 1 on 

a Λ transition whenever an a is on the stack.

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

q0 q1

a, Z0 / a Z0

b, Z0 / b Z0

b, a / Λ

b, b / bb
a, b / Λ

a, a / aa

Λ, a / a

Non-determinism

PDA Example

• Let’s try on JFLAP

PDA Example

Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– Removing the non-determinism :
• Let the stack store 1 minus the “excess” of one 

symbol over another
• The state will determine whether you have excess 

a’s or excess b’s
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PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

– The PDA will have 2 states:
• State 0 (start) : when na (x) ≤ nb (x) 

– Equality or surplus of b’s

• State 1 (accepting) : when na (x) >nb (x) 
– Surplus of a’s

PDA Example

• Example:
– L = { x ∈ { a, b }* | na (x) > nb (x) }

q0 q1

a, Z0 / Z0

b, Z0 / b Z0

b, a / Λ
b, b / bb
a, b / Λ

a, a / aa
a, Z0 /a Z0

b, Z0 / Z0

PDA Example

• Let’s try on JFLAP

Now you might be wondering…

CFL

Is there anything in here?

We know that all DCFLs are CFLs

DCFL

It can be shown…

• That the language pal:
– pal = { x ∈ { a, b }* | x = xr }

• Cannot be accepted by any DPDA.
• See Theorem 7.1 in book for proof.

It can also be shown

• That all regular languages can be accepted 
by a DPDA. 
– Since an FA (deterministic) is essentially a 

DPDA that doesn’t make use of the stack.
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Now our picture looks like

Regular Languages

Finite 
Languages

Deterministic Context Free Languages

Context Free Languages

Determinism vs. Non-Determinism

• Comparing FAs and PDAs
– DPDAs allow for Λ-transitions
– DPDAs allow for no moves 

– FAs and NDFAs are equivalent
– PDAs and DPDAs are not equivalent

Summary

• Pushdown Automata
– NDFA-Λs with a stack
– Deterministic PDAs

• The two are NOT equivalent

– JFLAP comes to the rescue yet again!

– Questions?

Next time

• Equivalence of CFLs and PDAs


