Java I/O

Reading, Writing, and stuff — Pt I1

Java I/O

* For the next couple of classes we will be
talking about Java I/O
— Last class: basics and low level I/O
— This class: “wrappers” and high level I/O

e All Java I/O classes are defined in the
java.io package.

A question

» Byte -> character conversion

— In order to support multiple languages (e.g.
English, Japanese, etc), conversion from bytes
to characters must be performed.

InputStreamReader

» Converts read bytes to characters

char
Text | bYtes @ » read()
file Keacex

Bytes-> char

* Default encoding is defined by the Java
System property file.encoding
- System.getProperty (“file.encoding”)

* This property is during Java installation

* You can override this when instantiating an
InputStreamReader or OutputStreamWriter

—public InputStreamWriter
(InputStream in, String enc)

Bytes->Char

* Note that FileWriter and FileReader assume
the default encoding

» See me if interested in reading/writing files
that are not encoded using the default
encoding.




Questions

 Any other questions from last class?

Java I/O

* Low level vs high level
— Low level: can only read/write a character or
byte at a time
— High level: can read/write strings that represent
different data types

* Ex. read/write an int, float,

Streams

» Basic low level mechanism for I/O in Java
is the stream

Streams

* Reading from a stream
— Open a stream
— While more info
* Read data
— Close the stream
* Writing to a stream
— Open a stream
— While more info
* Write data
— Close the stream

Data and Streams

» Types of data that can be read from/written to
streams
— Bytes (8-bits / bytes)
« Raw data
— Characters (16-bits / bytes)
« Text data
* Basic stream operations
— Read
— Write

The 4 base Java /O classes

READ WRITE
CHAR Reader Writer
BYTE | InputStream OutputStream

Each of these are abstract classes




Wrapper classes

* A class that takes a base class or data item
and provides additional methods to
manipulate it.

» The new class is said to act as a wrapper for
the base class or data item.

Wrapper classes

* public class myWrapper {
public myWrapper (WrappedClass C)

// additional methods for manipulating
// objects of type Wrapped Class

Class being wrapped

Wrapper classes

* Float, Integer, Double,and
Long

— Are wrapper classes for the basic datatypes of
float, int, double,and long.

— Float F = new Float (5.4f);
int i = F.intValue();
System.out.println (F.toString())

Wrapper classes and I/O classes

» Many subclasses of the 4 base java.io
classes are wrapper classes:
— Add additional functionality
— Convert from one format to another
— Filter the data coming in or going out
» These wrapper subclasses wrap the base
java.io classes.

Wrapper classes and I/O classes

* Classes wrap both extend base classes and wrap
them.

public class PrintWriter extends Writer{

public PrintWriter (Writer W) { .. }

I/O Wrapper classes

* Added functionality
— Buffering
— Data Conversion
— counting (I.e. line numbering)
— Pushback




Why not use inheritance?

» Wrapper classes do not define a strict class
hierarchy.

+ Can use many wrappers dependent on what
extra functionality you may need.

InputStream Wrappers

InputStream Wrappers

 BufferedInputStream

— Buffers input as it reads.

— Designed for efficiency
* DatalnputStream

— Allows binary data to be interpreted a basic data type.
 PushbackInputStream

— Allows one to pushback (or unread) a byte after it’s
been read.

A look at DatalnputStream

public DataInputStream extends
InputStream{

public DataInputStream (InputStream in)
boolean readBoolean ()throws IOException
int readInt () throws IOException

float readFloat () throws IOException
double readDouble () throws IOException
short readShort () throws IOException
char readChar () throws IOException

Creating wrapped streams

try f{
// Binary data coming from a file
InputStream in = new FileInputStream(“filename”);

// Buffer the data for effiency

BufferedInputStream bin = new BufferedInputStream (in);

// Add “read-by-type” functionality
DataInputStream din = new DataInputStream(bin);

// read data by type
double d = din.getDouble();
int i = din.getInt();

}

catch (IOException E) { ... }

OutputStream Wrappers

{_ FileDutputstrean .

{ Pipedoutputstrean

DatalutputStrean )

" Filter0 tream [ BufferedOutputstre

I -
Bytowrryoutputrear ) H____Prmstren )

Outputstream

~

—( Objectoutputstrean 3




OutputStream Wrappers

» BufferedOutputStream

— Buffers output as it writes.

— Designed for efficiency
* DataOutputStream

— Allows basic data types to be written to the stream
* PrintStream

— Allows character representation of basic data types to
be written to the stream.

A look at DataOutputStream

¢« public DataOutputStream extends OutputStream{

*« public DataOutputStream (OutputStream out)

« void writeBoolean (boolean b)throws IOException
* void writeInt (int i) throws IOException

¢« void writeFloat (float f) throws IOException

« void writeDouble (double d) throws IOException
*« void writeShort (short s) throws IOException

¢« void writeChar (char c¢) throws IOException

A look at PrintOutputStream

¢ public PrintWriter extends OutputStream{

¢« void print (boolean b)

¢ void print (int 1)
*« void print (float f)
¢ void print (char c)

(
(
(
(
¢ void print (char[] c
(
(
(
(

)
¢« void print (double d)
¢ void print (String S)
¢ void print (Object 0)
¢ void print (long 1)

A look at PrintOutputStream

void println (boolean b)
void println (int 1)
void println (float f)
void println (char c)
void println (char[] c)
void println (double d)
void println (String S)
)

void println (Object O

AN N N N N N

void println (long 1)

Reader Wrappers

Reader Wrappers

 BufferedReader

— Buffers input as it reads.

— Designed for efficiency
* LineNumberReader

— Keeps track of number of lines read

— Allows you to read text a line at a time
* PushbackReader

— Allows one to pushback (or unread) a character after
it’s been read.




Reader Wrappers

* Why there isn’t a DataReader?

— Actually, I don’t know...a DataReader would
be nice
— However, you can always convert text to a
basic data type by using valueOf methods:
e float Float.valueOf (String S)
*int Integer.valueOf (String S)
e double Double.valueOf (String S)
*boolean Boolean.valueOf (String S)

Writer Wrappers

(" Bufferedwriter

it OupurStreanReader  y—i FiTewricer N
- - Fiiceruricer )
(__Pivecurizer %

Writer Wrappers

* BufferedWriter
— Buffers output as it writes.
— Designed for efficiency

* PrintWriter

— Allows character representation of basic data
types to be written to the stream.

* Why is there no DataWriter?

PrintWriter - constructors

e public PrintWriter (Writer out)
¢« public PrintWriter (OutputStream out)
— Supplied for convenience

— Includes a OutputStreamWriter to convert text
data to binary

A look at PrintWriter

¢ public PrintWriter extends Writer({

¢ void print (boolean b)

¢« void print (int 1)
¢ void print (float f)
¢ void print (char c)

)
double d)
String S)
Object 0)
long 1)

(

(

(

(
¢ void print (char[] c

¢ void print (

*« void print (

¢ void print (

(

¢ void print

A look at PrintWriter

void println (boolean b)
void println (int 1)

void println (float f)
void println (char c)

void println (char([] c)
void println (double d)
void println (String S)
)

void println (Object O

YA N N N N Y

void println (long 1)




Mixing low level I/O with high
level I/O

 Since PrintWriter extends as well as wraps Writer,

you can use it to do both low and high level 1/O:

try {
PrintWriter P = new PrintWriter

(new FileWriter (“filename”));
int 1 = 7;
char ¢ = ‘a’;
P.println (i);
P.write (c);
}
catch (IOException E) { .. }

Standard in, out, error

* System.in
— Defined as a static InputStream
— Standard input stream

* System.out
— Defined as a static PrintStream
— Standard output stream

» System.err
— Defined as a static PrintStream
— Standard error stream

Reading lines of text from System.in

// System.in is an InputStream, we want
// read characters, not bytes

InputStreamReader ir = new InputStreamReader
(System.in);

// We’ll need the ability to read text
// lines at a time

BufferedReader br = new BufferedReader (ir);

// Now we can read lines of text
String curline = br.readLine();

Summary

» Wrapper classes

* Uses for wrapper classes
— High level data I/O

» Wrappers available for Reader, Writer,
InputStream, OutputStream

* System.in, System.out, System.err

Something to think about for next time

Jxx
* A test program for the Payroll Class
*/

static public void main (String args[])

{

// Create a payroll
Payroll pay = new Payroll();

// Create some actors, define the number of

// performances for each then add them to the payroll
Actor A = new Actor ("Nathan Lane");

A.perform (8);

pay.addPerformer (a);

// calculate and print out the total weekly pay
System.out.println ("The total weekly pay for this week is " +
pay.calculateTotalPay () ;

Something to think about for next time

» Change the Payroll app testing function so
that Performers are read in from a text file
or from standard input:

— Format of input (1 line for each):
* Name
» Type (A for actor, G for Guitarist, D for Drummer)
« # of performance




Something to think about for next time Questions?

» Usage:
—java Payroll
« will take input from standard in
—Java Payroll infile
» Will take input from input file infile




