
1

Java I/O

Reading, Writing, and stuff – Pt II

Java I/O

• For the next couple of classes we will be
talking about Java I/O
– Last class: basics and low level I/O
– This class: “wrappers” and high level I/O

• All Java I/O classes are defined in the
java.io package.

A question

• Byte -> character conversion
– In order to support multiple languages (e.g.

English, Japanese, etc), conversion from bytes
to characters must be performed.

InputStreamReader

• Converts read bytes to characters

Text

file

bytes InputStream

Reader

char
read()

Bytes-> char

• Default encoding is defined by the Java
System property file.encoding
– System.getProperty (“file.encoding”)

• This property is during Java installation
• You can override this when instantiating an

InputStreamReader or OutputStreamWriter
– public InputStreamWriter
(InputStream in, String enc)

Bytes->Char

• Note that FileWriter and FileReader assume
the default encoding

• See me if interested in reading/writing files
that are not encoded using the default
encoding.

2

Questions

• Any other questions from last class?

Java I/O

• Low level vs high level
– Low level: can only read/write a character or

byte at a time
– High level: can read/write strings that represent

different data types
• Ex. read/write an int, float,

Streams

• Basic low level mechanism for I/O in Java
is the stream

Streams

• Reading from a stream
– Open a stream
– While more info

• Read data
– Close the stream

• Writing to a stream
– Open a stream
– While more info

• Write data
– Close the stream

Data and Streams

• Types of data that can be read from/written to
streams
– Bytes (8-bits / bytes)

• Raw data

– Characters (16-bits / bytes)
• Text data

• Basic stream operations
– Read
– Write

The 4 base Java I/O classes
READ WRITE

CHAR

BYTE

Each of these are abstract classes

Reader Writer

InputStream OutputStream

3

Wrapper classes

• A class that takes a base class or data item
and provides additional methods to
manipulate it.

• The new class is said to act as a wrapper for
the base class or data item.

Wrapper classes

• public class myWrapper {
public myWrapper (WrappedClass C)

// additional methods for manipulating
// objects of type Wrapped Class

}
Class being wrapped

Wrapper classes

• Float, Integer, Double, and
Long
– Are wrapper classes for the basic datatypes of
float, int, double, and long.

– Float F = new Float (5.4f);
int i = F.intValue();
System.out.println (F.toString())

Wrapper classes and I/O classes

• Many subclasses of the 4 base java.io
classes are wrapper classes:
– Add additional functionality
– Convert from one format to another
– Filter the data coming in or going out

• These wrapper subclasses wrap the base
java.io classes.

Wrapper classes and I/O classes

• Classes wrap both extend base classes and wrap
them.

public class PrintWriter extends Writer{

public PrintWriter (Writer W) { … }
}

I/O Wrapper classes

• Added functionality
– Buffering
– Data Conversion
– counting (I.e. line numbering)
– Pushback

4

Why not use inheritance?

• Wrapper classes do not define a strict class
hierarchy.

• Can use many wrappers dependent on what
extra functionality you may need.

InputStream Wrappers

InputStream Wrappers

• BufferedInputStream
– Buffers input as it reads.
– Designed for efficiency

• DataInputStream
– Allows binary data to be interpreted a basic data type.

• PushbackInputStream
– Allows one to pushback (or unread) a byte after it’s

been read.

A look at DataInputStream
• public DataInputStream extends
InputStream{

• public DataInputStream (InputStream in)
• boolean readBoolean()throws IOException
• int readInt() throws IOException
• float readFloat() throws IOException
• double readDouble() throws IOException
• short readShort() throws IOException
• char readChar() throws IOException

Creating wrapped streams
try {

// Binary data coming from a file
InputStream in = new FileInputStream(“filename”);

// Buffer the data for effiency
BufferedInputStream bin = new BufferedInputStream (in);

// Add “read-by-type” functionality
DataInputStream din = new DataInputStream(bin);

// read data by type
double d = din.getDouble();
int i = din.getInt();

}
catch (IOException E) { ... }

OutputStream Wrappers

5

OutputStream Wrappers

• BufferedOutputStream
– Buffers output as it writes.
– Designed for efficiency

• DataOutputStream
– Allows basic data types to be written to the stream

• PrintStream
– Allows character representation of basic data types to

be written to the stream.

A look at DataOutputStream
• public DataOutputStream extends OutputStream{

• public DataOutputStream (OutputStream out)
• void writeBoolean(boolean b)throws IOException

• void writeInt(int i) throws IOException
• void writeFloat(float f) throws IOException

• void writeDouble(double d) throws IOException
• void writeShort(short s) throws IOException

• void writeChar(char c) throws IOException

A look at PrintOutputStream
• public PrintWriter extends OutputStream{

• void print (boolean b)
• void print (int i)

• void print (float f)
• void print (char c)

• void print (char[] c)
• void print (double d)

• void print (String S)
• void print (Object O)

• void print (long l)

A look at PrintOutputStream
void println (boolean b)

void println (int i)
void println (float f)

void println (char c)
void println (char[] c)

void println (double d)
void println (String S)

void println (Object O)
void println (long l)

Reader Wrappers Reader Wrappers

• BufferedReader
– Buffers input as it reads.
– Designed for efficiency

• LineNumberReader
– Keeps track of number of lines read
– Allows you to read text a line at a time

• PushbackReader
– Allows one to pushback (or unread) a character after

it’s been read.

6

Reader Wrappers

• Why there isn’t a DataReader?
– Actually, I don’t know…a DataReader would

be nice
– However, you can always convert text to a

basic data type by using valueOf methods:
•float Float.valueOf (String S)
•int Integer.valueOf (String S)
•double Double.valueOf (String S)
•boolean Boolean.valueOf (String S)

Writer Wrappers

Writer Wrappers

• BufferedWriter
– Buffers output as it writes.
– Designed for efficiency

• PrintWriter
– Allows character representation of basic data

types to be written to the stream.
• Why is there no DataWriter?

PrintWriter - constructors

• public PrintWriter(Writer out)
• public PrintWriter(OutputStream out)

– Supplied for convenience
– Includes a OutputStreamWriter to convert text

data to binary

A look at PrintWriter
• public PrintWriter extends Writer{

• void print (boolean b)
• void print (int i)

• void print (float f)
• void print (char c)

• void print (char[] c)
• void print (double d)

• void print (String S)
• void print (Object O)

• void print (long l)

A look at PrintWriter
void println (boolean b)

void println (int i)
void println (float f)

void println (char c)
void println (char[] c)

void println (double d)
void println (String S)

void println (Object O)
void println (long l)

7

Mixing low level I/O with high
level I/O

• Since PrintWriter extends as well as wraps Writer,
you can use it to do both low and high level I/O:
try {

PrintWriter P = new PrintWriter
(new FileWriter (“filename”));

int i = 7;
char c = ‘a’;
P.println (i);
P.write (c);

}
catch (IOException E) { … }

Standard in, out, error

• System.in
– Defined as a static InputStream
– Standard input stream

• System.out
– Defined as a static PrintStream
– Standard output stream

• System.err
– Defined as a static PrintStream
– Standard error stream

Reading lines of text from System.in

// System.in is an InputStream, we want
// read characters, not bytes

InputStreamReader ir = new InputStreamReader
(System.in);

// We’ll need the ability to read text
// lines at a time

BufferedReader br = new BufferedReader (ir);

// Now we can read lines of text
String curline = br.readLine();

Summary

• Wrapper classes
• Uses for wrapper classes

– High level data I/O
• Wrappers available for Reader, Writer,

InputStream, OutputStream
• System.in, System.out, System.err

Something to think about for next time
/**
* A test program for the Payroll Class
*/

static public void main (String args[])
{

// Create a payroll
Payroll pay = new Payroll();

// Create some actors, define the number of
// performances for each then add them to the payroll
Actor A = new Actor ("Nathan Lane");
A.perform (8);
pay.addPerformer (A);
...

// Calculate and print out the total weekly pay
System.out.println ("The total weekly pay for this week is " +

pay.calculateTotalPay());
}

Something to think about for next time

• Change the Payroll app testing function so
that Performers are read in from a text file
or from standard input:
– Format of input (1 line for each):

• Name
• Type (A for actor, G for Guitarist, D for Drummer)
• # of performance

8

Something to think about for next time

• Usage:
– java Payroll

• will take input from standard in
– Java Payroll infile

• Will take input from input file infile

Questions?

