

Projects

- Approx 26-28 projects
- Listing of projects now on Web
- Presentation schedule
- Presentations (15 min max)
- Last $\underline{4}$ classes (week $9+$ week $10+$ finals week)
- Sign up
- Email me with $1^{\text {st }}, 2^{\text {nd }}, 3^{\text {rd }}$ choices
- First come first served.
- Mid-quarter report due Wednesday
- Drop in dropbox.

The Rendering Equation

- Kajiya: 1986
- "Unified context for viewing rendering algorithms as more or less accurate approximations to the solution of a single equation"
- Expresses the quantity of light transferred from one point \mathbf{x}^{\prime} to another \mathbf{x}, summed over all points.

The Rendering Equation

- Transport Intensity
$I\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right)\left[\varepsilon\left(x, x^{\prime}\right)+\int_{S} \rho\left(x, x^{\prime}, x^{\prime \prime}\right) I\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime \prime}\right]$
$I\left(x, x^{\prime}\right)=$ Transport energy or intensity of light passing from point x ' to point x (unoccluded two point transport)
The Rendering Equation
$I\left(x, x^{\prime}\right)=$ Geometry term
$g\left(x, x^{\prime}\right)=$ geometry term

$=0$, if x is not visible from x^{\prime}

$=1 / \mathrm{d}^{2}$ otherwise

The Rendering Equation

- Emittance
$I\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right)\left[\left(x, x^{\prime}\right)+\int_{S} \rho\left(x, x^{\prime}, x^{\prime \prime}\right) I\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime \prime}\right]$
$\varepsilon\left(x, x^{\prime}\right)=$ light energy emitted from point x^{\prime} towards x .

The Rendering Equation
$I\left(x, x^{\prime}\right)=g\left(x, x^{\prime}\right)\left[\begin{array}{l}\varepsilon\left(x, x^{\prime}\right)+\int_{S} \\ \left.I=g\left(x, x^{\prime}, x^{\prime \prime}\right) I\left(x^{\prime}, x^{\prime \prime}\right) d x^{\prime \prime}\right]\end{array}\right.$
$I=$$g \varepsilon+g R(I)$ direct \quad indirect

The Rendering Equation

- In short...
- The transport of light from point \mathbf{x}^{\prime} to point \mathbf{x} is equal to the sum of
- the light emitted from \mathbf{x}^{\prime} in the direction of \mathbf{x} and
- the total light scattered from x^{\prime} towards x due to light from all other surfaces in the scene.

The Rendering Equation

- This can be expanded using the Neuman series for implementation purposes:

$$
I=g \varepsilon+g \varepsilon(R g)+g \varepsilon(R g)^{2}+g \varepsilon(R g)^{3}+\ldots
$$

or

$$
I=\sum_{i=0}^{\infty} g \varepsilon(R g)^{i}
$$

The Rendering Equation

$\rho\left(x, x^{\prime}, x^{\prime \prime}\right)=$ light energy reflected from point x^{\prime} towards point x from light coming from x ", i.e. BRDF

The Rendering Equation

- Why is this important?

$$
I=\underset{\text { direct }}{g \varepsilon}+\underset{\text { 1st scattering }}{g \varepsilon}(R g)+\text { 2nd scattering }_{g} \varepsilon(R g)^{2}+\underset{\text { 3rd scattering }}{g \varepsilon(R g)^{3}}+\ldots
$$

Rendering methods can be characterized by the number of scatterings considered

The Rendering Equation

- Local vs Global Illumination Models

$$
I=\underset{\text { direct } \quad \underset{\text { 1st scattering }}{g \varepsilon}+g \varepsilon(R g)+g \varepsilon(R g)^{2}+g \varepsilon(R g)^{3}+\ldots}{g \text { 2nd scattering } \quad \text { 3rd scattering }}
$$

Local illumination - only considers direct component
Global illumination - also considers other scattered component

The Rendering Equation

- Local Illumination

$$
I=\underset{\text { direct }}{g \varepsilon}
$$

Only object's first contact with light is considered. Lighting "simulated" by illumination model used.

NOTE: Kajiya does not include ambient light!

The Rendering Equation

- Notes:
- Uses geometric optics, based on light as rays
- Phase, diffraction, and transmission through participatory media not considered (i.e., only homogenous refraction considered)
- Dependence on wavelength is implied
- Not expressed using physical units Question: Isn't I (x, x') simply radiance at a point?
- Yes! (with the exception of some geometric terms...)
- More when we talk about radiosity

The Rendering Equation

- Summary
- Equation for describing rendering algorithms.
- Describes light arriving at a point from another point (and indirectly all other points)
- Considers direct light and recursive scattering

Solving the Rendering

Equation

- Approximations to the solution of the rendering equation
- Recursive Ray Tracing
- Radiosity
- Kajia's Method (path tracing)

Rendering Methods

- Radiosity
- The problem with ray tracing
- Great for specular type reflections
- Awful for diffuse reflections.
- Radiosity
- From the guys who brought you Cook-Torrance illumination mode!!
- Not quite as elegant as ray tracing
- More physically based

Rendering Methods

- Ray Tracing

Unin source Indiver by whe eye

Rendering Methods

- Radiosity
- Image is created by using calculated radiant existance values in standard rendering process.
- In essence, radiosity defines a "made to fit" texture mapping

Rendering Methods

- Radiosity
- Not points -- But patches
- Scene is subdivided into patches
- Radiant exitance will be calculated for each patch

But does anyone use radiosity
in practice

- Glad you asked!
- Bunny (Blue Sky Studios)

Rendering Methods

- Getting closer to reality
- Radiosity
- Two path method - combine ray tracing and radiosity

Rendering Methods

- Kajiya's solution (Path tracing)
- Much like ray tracing
- Determine the path of light that eventually reaches the eye.
- Only 1 ray spawned per intersection
- Reflection in specular
- Reflection in diffuse
- Refraction
- Which ray to spawn determined via stochastic sampling.

Kajiya's Method

Figure 6. A sample image. All objects are neutral grey. Coler on the object ie due to cauatics from the green glaes balls and color bleeding from the base polygon.

Summary

- Rendering equation
- Mathematical expression of rendering process
- Solutions
- Ray Tracing
- Radiosity
- Combination of both.
- Questions?

