

 1

Ray Tracing Basics I

Computer Graphics as Virtual Photography

camera
(captures
light)

synthetic
image

camera
model

(focuses
simulated
lighting)

processing

photo
processing

tone
reproduction

real
scene

3D
models

Photography:

Computer
Graphics:

Photographic
print

Ray Tracing in the real world
 Light is emitted from light source
 Bounces off of the environment
 Assumptions

 Light travels in straight rays
 Path of light changes based on object interaction.
 Can simulate using basic geometry.

 Some light will reach and be focused by
camera onto film plane.
 Lots of light will not!
 In image synthesis, we are only interested in the

light that does

Backwards Ray Tracing

 Light rays are traced backward from the
eye (center of projection), through a
viewing plane, into scene to see what it
hits.

 The pixel is then set to the color values
returned by the ray.

 This color is a result of the object hit by
the ray.

Turner Whitted

 Insert Cheesy Ray Tracing Movie Here

Ray Tracing - Basics

Sometimes you don’t hit an object

 2

Ray Tracing - Basics

Sometimes you do

Ray Tracing - Basics

 If you do hit an object, additional rays
are spawned and sent into world to
determine color at intersection point
 Shadow ray
 Reflected ray
 Transmitted ray

Ray Tracing - Basics
 Shadow ray

 Ray spawned toward each light source to see
if point is in shadow.

Ray Tracing - Basics

 Shadow ray

Ray Tracing

 Reflective Ray

Ray Tracing

 Transmitted ray

 3

Recursive Ray Tracing Ray Tracing
 Ray Tracing incorporates into a single

framework:
 Hidden surface removal
 Shadow computation
 Reflection of light
 Refraction of light
 Global Specular Interaction

 Extremely elegant and compact

Ray Tracing Basics

 Basic Ray Tracing -- Example

Whitted

Ray Tracing Assignment

 For Checkpoint 2:
 Trace rays through camera model
 Using ray tracing for visible surface

determination.

 Questions -- Break

Ray Tracing through the Camera

 Issues
 Ray Geometry
 Object-Ray Intersection
 Projection

Introducing Ray
 Use mathematical description of a ray

and objects to determine intersection.
 Parametric representation of a ray:

 Origin of ray, Po = (xo,yo,zo)
 Direction D = (dx, dy, dz)
 Ray (ω) = Po + ω D

 If D is normalized, then ω will be the
distance from origin of the ray.

 4

Ray-Object Intersection

 Most of the computation in ray tracing
is determining ray object-intersection

 When a ray intersects an object, we
need to know:
 Point of intersection
 Normal of surface at point of intersection

Ray-Sphere Intersection

 The Sphere
 A sphere can be defined by:

 Center (xc, yc, zc)
 Radius r

 Equation of a point (xs, ys, zs) on a sphere:

2222)()()(rzzyyxx
cscscs

=!+!+!

Ray-Sphere Intersection

 Ray - Sphere Intersection
 Substituting ray equation for (xs, ys, zs)
 We get:

A ω2 + B ω + C = 0
 where

))
2222

222

)()()(

()()((2

rzzyyxxC
zzdzyydyxxdxB

dzdydxA

cococo

cococo

−−+−+−=

−+−+−=

++=

Ray-Sphere Intersection
 Using the Quadratic Formula

 Note: ω must be positive, otherwise the
intersection is BEHIND the origin of the ray

A
ACBBω

2
42 −±−

=

Ray-Sphere Intersection
Note: If D is normalized

 A = dx2 + dy2 + dz2 = 1 and

2
42 CBBω −±−

=

Ray-Sphere Intersection

 If B2 – 4C is:
< 0 – no real root, no intersection
= 0 – one root, ray intersects at sphere’s

surface
> 0 – two roots, ray goes through sphere.

Use least positive root

 5

Ray-Sphere Intersection

 Once we found a ωi for the point of
intersection, the actual point is:
 (xi, yi, zi) = (x0 + dx * ωi , y0 + dy * ωi , z0 + dz * ωi)

 The normal at the point of intersection is:
 (xn, yn, zn) = ((xi - xc)/r, (yi - yc)/r, (zi - zc)/r)
 (We divide by r to normalize!)

Ray-Plane Intersection
 A plane can be defined by:

 A normal vector and a point on the plane

 It has the equation

 where Pn = (A, B, C) gives the normal and if
normalized (A2 + B2 + C2 = 1), F will the shortest
distance to the plane from the origin of world.

0=+++ FCzByAx

Ray-Plane Intersection

 Ray - Plane Intersection
 For plane with equation:

 Plug in equation for ray and we get

)/()()(
0 nn

ooo DPFPP
CdzBdyAdx

FCzByAxω •+•−=
++

+++−
=

0=+++ FCzByAx

Ray-Plane Intesection
 If (Pn • D) is

 0 – then ray is parallel to plane, no
intersection

 If ω is

 < 0 – then the ray intersects behind the
origin of the ray…ignore!

 > 0 – calculate the point of intersection

Ray-Plane Intersection

 Once we found a ωi for the point of
intersection, the actual point is:
 (xi, yi, zi) = (x0 + dx * ωi , y0 + dy * ωi , z0 + dz * ωi)

 And we already have the normal at the
point of intersection is:
 Pn = (A, B, C)

Ray-Polygon Intesection

 Find the plane in which the polygon
sits

 Find the point of intersection between
the ray and the plane

 If point of intersection is found, see if
it lies within the boundaries of the
polygon.

 6

Ray-Polygon Intersection
 Find the plane in which the polygon sits

 A plane can be defined by:
 A normal vector and a point

 And has the equation

 where Pn = (A, B, C) gives the normal and if normalized
(A2 + B2 + C2 = 1), F will give the shortest distance to
the plane from the origin of the world.

0=+++ FCzByAx

Ray-Polygon Intersection
 Find the point of intersection between the ray

and the plane
 Done previously

 See if point of intersection lies within the
boundaries of the polygon.
 One algorithm:

 Draw line from Pi to each polygon vertex
 Measure angles between lines

 Recall: (A • B) = |A||B| cos θ
 If sum of angles between lines is 360°,

polygon contains P i

Other Intersections

 To add other geometric primitives to
your ray tracer
 Must mathematically derive the point of

intersection between a ray and geometric
primitive.

 Questions?

Ray Tracing through the Camera

 Issues
 Ray Geometry
 Object-Ray Intersection
 Projection

Projection Ray Tracing through a camera
 Set up your scene

 Determine position / orientation of objects in
scene.

 Spawn a ray and send into scene
 Define ray direction (remember to normalize)
 Check for closest intersection
 Calculate and return color

 Display or save final image

 7

Introducing Ray
 Use mathematical description of a ray

and objects to determine intersection.
 Parametric representation of a ray:

 Origin of ray, Po = (xo,yo,zo)
 Direction D = (dx, dy, dz)
 Ray (ω) = Po + ω D

 If D is normalized, then ω will be the
distance from origin of the ray.

Graphics Pipeline

3D Object
Coordinates

3D World
Coordinates

3D Eye
Coordinates

3D Eye
Coordinates

2D Eye
Coordinates

2D Screen
Coordinates

Object
Transformation

Viewing
Transformation

3D Clipping Projection Window to Viewport
Mapping

Camera Transformations

 (ux,uy,uz) are
coordinates of unit u
vector w.r.t. world space

 Similar for v, n,

 (eye) is the origin of
view space w.r.t world
space

 If ups are aligned, simply
use negative eye location
values in the fourth
column



















=

1000
zyx

zyx

zyx

nnn
vvv
uuu

M

-eye• u
-eye• v
-eye• n

Graphics Pipeline

3D Object
Coordinates

3D World
Coordinates

3D Eye
Coordinates

3D Eye
Coordinates

2D Eye
Coordinates

2D Screen
Coordinates

Object
Transformation

Viewing
Transformation

3D Clipping Projection Window to Viewport
Mapping

Projection
 Note: Projection not required as this will be

done as part of the ray tracing process

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

11

z

y

x

n

v

u

p

p

p

M
P

P

P

Spawning rays through camera

 Coordinate spaces
 Can do in camera space or world space
 Camera space

 Must transform all objects/lights to camera
space

 World space
 Must transform initial rays to world space

 8

Projection in Camera Space
 The role of cameras can be described as

projecting a 3D scene onto a 2D plane

Converting to World Space

!
!
!
!

"

#

$
$
$
$

%

&

=

!
!
!
!

"

#

$
$
$
$

%

&

'

11

1

n

v

u

z

y

x

p

p

p

M
P

P

P

Inverting a 4x4 Matrix

 Code samples from
 Graphics Gems
 Ken Perlin

 Available on Web
 Will link on DIARY

Tips – World Space
 Need only transform the location of 1st “pixel”

location on image plane and dx, dy, and dz as
you move across and down the plane

Tips – Calculating Color

 Find point of intersection
 Good Safety tip – only consider

intersections if they occur past the image
plane.

 If intersection
 Return color
 Of object

Displaying your image

 You don’t really need the full power of a
3D API to do ray tracing
 Just need the ability to write color values

to pixels
 Some of the matrix operation routines may

be helpful.

 9

Displaying your image

 OpenGL
 glDrawPixels();
 Chapter 10, Hill
 Chapter 8, OpenGL, red book

Displaying your image
 C library

 Netppm
 Netpbm is a freeware too lkit/lib rary for
m anipulat ion of g raphic im ag es, includ ing conversion
of im ag es between a variety of d if ferent form ats.

 http ://netpbm .sourceforg e . net/

 Java
 Java2D

 java.aw t. im ag e

 javax. im ag eio

 Questions?

