!L Ray Tracing Basics I

i Computer Graphics as Virtual Photography

Photography: real camera photo Photographic
Srag scene (captures processing print
light)
] 1@
Computer 3D camera tone synthetic
Graphics: models model reproduction image
(focuses
simulated
lighting)

Ray Tracing in the real world

= Light is emitted from light source
= Bounces off of the environment

= Assumptions
= Light travels in straight rays

= Path of light changes based on object interaction.

= Can simulate using basic geometry.

= Some light will reach and be focused by
camera onto film plane.
= Lots of light will not!

= In image synthesis, we are only interested in the
light that does

i Backwards Ray Tracing

= Light rays are traced backward from the
eye (center of projection), through a
viewing plane, into scene to see what it
hits.

= The pixel is then set to the color values
returned by the ray.

= This color is a result of the object hit by
the ray.

Turner'Whitted

*

= Insert Cheesy Ray Tracing Movie Here

i Ray Tracing - Basics

Sometimes you don’t hit an object

i Ray Tracing - Basics

Sometimes you do

i Ray Tracing - Basics

= If you do hit an object, additional rays
are spawned and sent into world to
determine color at intersection point
= Shadow ray
= Reflected ray
= Transmitted ray

Ray Tracing - Basics

= Shadow ray

= Ray spawned toward each light source to see
if point is in shadow.

i Ray Tracing - Basics

= Shadow ray

i Ray Tracing

= Reflective Ray

i Ray Tracing

= Transmitted ray

i Recursive Ray Tracing

i Ray Tracing

= Ray Tracing incorporates into a single
framework:
= Hidden surface removal
= Shadow computation
= Reflection of light
= Refraction of light
= Global Specular Interaction
= Extremely elegant and compact

i Ray Tracing Basics

= Basic Ray Tracing -- Example

Whitted

i Ray Tracing Assignment

= For Checkpoint 2:
= Trace rays through camera model

= Using ray tracing for visible surface
determination.

= Questions -- Break

i Ray Tracing through the Camera

= Issues
= Ray Geometry
= Object-Ray Intersection
= Projection

i Introducing Ray

= Use mathematical description of a ray
and objects to determine intersection.
= Parametric representation of a ray:
= Origin of ray, P, = (x,,¥,,Z,)
= Direction D = (dx, dy, dz)
= Ray (w) =P, +w D
= If D is normalized, then w will be the
distance from origin of the ray.

i Ray-Object Intersection

= Most of the computation in ray tracing
is determining ray object-intersection
= When a ray intersects an object, we
need to know:
= Point of intersection
= Normal of surface at point of intersection

i Ray-Sphere Intersection

= The Sphere

= A sphere can be defined by:
= Center (X, Yo 20
= Radius r

= Equation of a point (x,, y., Z,) on a sphere:

(x.-x)+(y. -y +(z. -z)Y =r
s~ X Vs =Ve s T Ze

i Ray-Sphere Intersection

= Ray - Sphere Intersection
= Substituting ray equation for (x,, y,, z,)
= We get:
A2 +Bw+C=0
= where
A=di +dy +d7
B=2@dx(x,~x)*tdy(y,~y.)tdz(z, z.))
C=(x,~x)* (0,2 *(z,~z)

Ray-Sphere Intersection

= Using the Quadratic Formula

-B*~\B*-44C

24

w =

= Note: w must be positive, otherwise the
intersection is BEHIND the origin of the ray

i Ray-Sphere Intersection

Note: If Dis normalized
A=dx%+dy?+dz2=1and

w " BEVB -4C

2

i Ray-Sphere Intersection

w If BZ—4Cis:
< 0 - no real root, no intersection

= 0 — one root, ray intersects at sphere’s
surface

> 0 — two roots, ray goes through sphere.

Use least positive root

i Ray-Sphere Intersection

= Once we found a o) for the point of
intersection, the actual point is:
= (X Yy 2) = (X +aX *W;, ¥y +dy *W;, 2y + dz * W)
= The normal at the point of intersection is:
= (X Y 20) = (6 - X)/r, (; - Y/, (2 - Z)/r)

= (We divide by r to normalize!)

i Ray-Plane Intersection

= A plane can be defined by:
= A normal vector and a point on the plane
= It has the equation

Ax+By+tCz*+F =0

= where P, = (A, B, C) gives the normal and if
normalized (A2 + B2 + (2 = 1), Fwill the shortest
distance to the plane from the origin of world.

i Ray-Plane Intersection

= Ray - Plane Intersection
=« For plane with equation:

Ax+*BytCztF =0

= Plug in equation for ray and we get
e " (Ax, By, +Cz,+ F) _
Adx* Bdy+ Cdz

“(B Py tF)(F,°D)

i Ray-Plane Intesection

w If (Pn eD)is
= 0 —then ray is parallel to plane, no
intersection

« Ifwis

= < 0 — then the ray intersects behind the
origin of the ray...ignore!

= > 0 — calculate the point of intersection

i Ray-Plane Intersection

= Once we found a wj for the point of
intersection, the actual point is:
. (x,,y,,z,):(xo+dx*w,-,yo+dy*(u,-,zo+dz*(ul-)
= And we already have the normal at the
point of intersection is:
«P,=(A B C)

i Ray-Polygon Intesection

a Find the plane in which the polygon
sits

- Find the point of intersection between
the ray and the plane

« If point of intersection is found, see if
it lies within the boundaries of the
polygon.

i Ray-Polygon Intersection

= Find the plane in which the polygon sits
= A plane can be defined by:
= A normal vector and a point
= And has the equation

Ax+By+Cz+F =0

= where P, = (A, B, C) gives the normal and if normalized
(A2 + B2 + 2 = 1), F will give the shortest distance to
the plane from the origin of the world.

Ray-Polygon Intersection

= Find the point of intersection between the ray
and the plane
= Done previously

= See if point of intersection lies within the
boundaries of the polygon.

= One algorithm:
= Draw line from P;to each polygon vertex
= Measure angles between lines
Recall: (A *» B) = |A||B]| cos 6
= If sum of angles between lines is 360°,
polygon contains P;

i Other Intersections

= To add other geometric primitives to
your ray tracer

= Must mathematically derive the point of
intersection between a ray and geometric
primitive.

= Questions?

i Ray Tracing through the Camera

= Issues

= Projection

i Projection

i Ray Tracing through a camera

ar Set up your scene
- Determine position / orientation of objects in
scene.
» Spawn a ray and send into scene
- Define ray direction (remember to normalize)
o+ Check for closest intersection
ne Calculate and return color

» Display or save final image

i Introducing Ray

= Use mathematical description of a ray
and objects to determine intersection.
= Parametric representation of a ray:
= Origin of ray, P, = (x,,¥,,Z,)
= Direction D = (dx, dy, dz)
= Ray (w) =P, +w D
= If D is normalized, then w will be the
distance from origin of the ray.

i Graphics Pipeline

3D Object 3D World| 3D Eye Eye | 2D Eye 2D Screen
Coordinates "0~ Coordin u'°'>A Cnardimles-or Coordinates TOP Coordinates O Coordinates
T T f

Object Viewing 3D Clipping Projection Window to Viewport
Transformation Transformation Mapping

i Camera Transformations

® (u,uy,u,) are

U, u, U, -eyeeu coordinates of unit u
vV v eve v vector w.r.t. world space
M= 7 Y m Similar forv, n,
-eye* n
neom,on m (eye) is the origin of
0O 0 O 1 view space w.r.t world

space

m If ups are aligned, simply
use negative eye location
values in the fourth
column

i Graphics Pipeline

3D Object 3D World 3D Eye D Eye 2D Eye 2D Screen
Coordinates "0 Coordinates "0 Coordinates O feoordinates "0 Coordinates] O Coordinates

Object Viewing 3D Clipping Projection Window to Viewport
Transformation Transformation Mapping

i Projection

= Note: Projection not required as this will be
done as part of the ray tracing process

P, D,

i Spawning rays through camera

= Coordinate spaces
= Can do in camera space or world space

= Camera space

= Must transform all objects/lights to camera
space

= World space
= Must transform initial rays to world space

i Projection in Camera Space

= The role of cameras can be described as
projecting a 3D scene onto a 2D plane

i Converting to World Space

P, D
P, eI
P, D,
1 1

i Inverting a 4x4 Matrix

= Code samples from

= Graphics Gems
= Ken Perlin

= Available on Web
= Will link on DIARY

Tips — World Space

= Need only transform the location of 1st “pixel”
location on image plane and dx, dy, and dz as
you move across and down the plane

i Tips — Calculating Color

= Find point of intersection
= Good Safety tip — only consider
intersections if they occur past the image
plane.
= If intersection
= Return color
= Of object

i Displaying your image

= You don't really need the full power of a
3D API to do ray tracing
= Just need the ability to write color values
to pixels
= Some of the matrix operation routines may
be helpful.

i Displaying your image

= OpenGL
= glDrawPixels();
= Chapter 10, Hill
= Chapter 8, OpenGL, red book

Displaying your image

= Clibrary
= Netppm
= Netpbm is a freeware toolkit/library for
manipulation of graphic images, including conversion
of images between a variety of different formats.
= http://netpbm.sourceforge.net/
= Java
= Java2D
= java.awt.image
= javax.imageio

= Questions?

