
1

REYES

REYES

• You might be surprised to know that most 
frames of all Pixar’s films and shorts do not 
use a global illumination model for 
rendering!

• Instead, they use REYES

REYES

• Renders Everything You Ever Saw
• Developed by Pixar and still(?) used as 

primary architecture for Pixar’s Renderman 
implementation, prman

• Example of a “practical” rendering system.

Goals of REYES

• Complex models (in an era of balls and planes!)
• Model diversity (fractals, graftals, particle systems)
• Shading Complexity
• Minimal Ray Tracing (Use textures instead, focus on 

geometry)
• Fast…needed for animations (feature length film ‘87, 

took 1 year, 3 min/frame)
• Image quality (no jaggies, aliasing, Moiré patterns)
• Build for flexibility

REYES Design Principles
• Use natural coordinates

– Texturing in object space
– Visibility in image space

• Exploit hardware capabilities (parallelism)
• Common representation for geometry
• Locality

– Geometric - one object at a time
– Texture - read texture once and only when needed
– Eliminates ray tracing and radiosity

• Linearity - time f(model size)
• Support (unlimitedly) large models
• Back door to allow use alternatives to render some
• Efficient access for texture maps

REYES

• REYES uses a basic Z-buffer
• Z-buffer algorithm

– In addition to pixel values, array of depths at 
each pixel is maintained

– Image space but object based algorithm
– Only intensity of closest object is maintained.



2

REYES

• Z-buffer

REYES – Major Components

• Reliance on texture mapping
• Jitter supersampling
• Micropolygons

REYES – Reliance on Texture Mapping

• All means are taken to avoid ray tracing/radiosity
• Texture maps used for

– Environment mapping
– Reflections
– Bump/displacement mappings – normal, coordinate 

modifications
– Shadows – depth information from light source

• Especially efficient when considering rendering of 
multiple frames.

REYES - Texturing

• Texture mapping efficiencies
– Prefiltering of texture maps
– Have texture resolution match that of patch 

resolution.
• Requires lots of work up front, which 

eliminates the need to do it at runtime. 

REYES - Texturing

• Prefiltered textures
– Textures stored as “pyramid” of images at 

various resolutions
– Resolutions between levels of pyramid are done 

via interpolation
– MIPMaps / FlashPix (Kodak)

Texture Mapping

• Mipmaps



3

REYES- Jittered 
Super-sampling

• Same idea as in distributed ray tracing
• Each pixel is subdivided into 16 subpixels
• Exact location of each subpixel sample determined by 

jittering.
• Z-buffer is kept at subpixel resolution
• Pixel value determined by averaging of subpixels 

comprising it.

REYES - Micropolygons

• Shading values are calculated on a single 
geometric entity, the micropolygon

• Flat shaded quadrilaterals, half of a pixel on 
each side 
– Why half of a pixel?

• Each micropolygon is represented by a 
single color.

REYES -
Micropolygons

• Dicing - Geometric primitives and patches 
must be converted to micropolygons

• Dice along boundaries in natural coordinate 
system of primitive 

• Done in eye space although it uses an estimate 
of size on screen

• Primitives may need to be converted to 
patches before dicing

The REYES Algorithm

one geometric primitive at a time

in screen space

into 
patches

in object coordinates

in screen coordinates
to allow for 
other rendering

REYES - Reading in Object

• Object computes its 
bounds in screen space

• Can be culled if not on 
screen

• Is split into patches, if 
necessary 

• Diced, if on screen

REYES Shading

• Each micropolygon (stored in a 
grid) is shaded and textured.

• Note that shading is done before 
visibility testing -> extra work

• Object-based algorithm, i.e.., 
done for whole object without 
regard for other objects

• Enables use of vector 
machines/vertex shaders(?)

• Avoids reloading textures
• Controls subdivision coherency
• No clipping
• No need to deal with perspective 

issues
• Can use displacement maps



4

REYES Visibility/Sampling

• Jitter sampling 
performed

• Visibility stored in z-
buffer.

• Compositing is done, 
if required, at this step

REYES Picture Generation
• Construct pixel values 

from subsamples
• Additional filtering as 

required.

REYES Example

• Rendered at 
1024x614

• 6.8 million 
micropolygons

REYES

• Quick and effective rendering using 
classical CG techniques
– No ray tracing
– No radiosity

• Designed for efficiency

Renderman and Rendering

• Renderman is a rendering interface standard
– Does not define how rendering is to be performed.

• prman and BMRT are both Renderman 
Compliant Renders:
– prman uses REYES 
– (Not clear what the latest prman uses)
– BMRT supports Ray Tracing and Radiosity

Renderman and Rendering

• What Renderman does define:
– C-based API for describing a scene
– Associate file format (RIB)
– Shader language for procedural lighting, 

shading, modeling

• Complexity and generality is a result of the 
shader language.



5

Renderman and Rendering

• Lighting Constructs in RSL
– Illuminance (point, axis, angle)

• Computes all light arriving at a point within a given 
cone (axis and angle define the cone)

• Could be from light sources or other objects
– Implementation is up to the renderer thus

• Could be determined using radiosity
• Could be determined using ray tracing
• Could be determined by indexing into a texture map.

Renderman and Rendering

• When writing a Renderman shader
– Illuminance can be used regardless of the 

method of computation method.

• Separation of shading from a given 
rendering technique.

Rendering 

• Summary
– Rendering Equation
– Ray Tracing
– Radiosity
– Two-Pass Global Illumination Method
– Photon Mapping
– REYES + Renderman

• Efficient global illumination is still a hot research 
topic.

Questions


