Advanced Ray Tracing

Paper Summaries
• Any takers?

Assignments
• Checkpoint 5
 – Due Wednesday
• Checkpoint 6
 – To be given Wednesday
• RenderMan
 – Due May 3rd

Projects
• Project feedback
• Approx 22 projects
• Listing of projects now on Web
• Presentation schedule
 – Presentations (15 min max)
 – Last 3 classes (week 10 + finals week)
 – Sign up
 • Email me with 1st, 2nd, 3rd choices
 • First come first served.

Projects
• Exam day presentations
 – Tuesday, May 18th / 8-10am
 • or
 – Wednesday, May 19th / 10:15-12:15

Computer Graphics as Virtual Photography

Photography:
- real scene
- camera (captures light)
- photo processing
- Photographic print

Computer Graphics:
- 3D models
- camera model (focuses simulated lighting)
- tone reproduction
- synthetic image
Ray Tracing

- Integrated aspects of light and object interaction that had formerly been handled by separate algorithms:
 - Hidden surface removal
 - Reflection
 - Refraction
 - Shadows
 - Global specular interaction

Turner Whitted

Ray Tracing - Problems

- Object - ray intersection
- Ray traced images are point sampled
 - “Too sharp” (super real) - “wrong image”
 - Sharp shadows
 - Sharp Reflection/Refraction
 - Multiple reflections especially are too sharp
 - Aliasing
- Doesn’t handle major light transport functions
 - Diffuse interaction
 - Scattering of light
 - Caustics
- Computation time

Ray Tracing – Avoiding Ray Traced Look

- Avoiding that “ray traced look”, i.e., handle diffuse interaction
 - Ray tracing is point sampling
 - 1 ray per pixel
 - Assumes pixel is a single point
 - Assumes pin hole camera
 - 1 ray for transmission & reflection
 - Assumes all reflection is specular
 - Assumes that BRDF for all incoming directions is single out going direction

Ray Tracing – Avoiding Ray Traced Look

- “Backward”/ “Reverse” Ray Tracing
 - Three approaches
 - “Backward” ray tracing
 - Trace objects other than rays
 - Stochastic sampling

“Backward”/ “Reverse” Ray Tracing

This approach is (sort of) used in Photon Mapping also – later…
Tracing things other than rays

- Beam tracing – pyramidal beams
 - Recursively applies Weiler-Atherton hidden surface removal algorithm
 - Polygonal surfaces only
- Cone tracing – cones
- Pencil Tracing – bundle of rays
 - Paraxial rays -> 4D vectors
 - Requires smooth surfaces

[Heckbert84]

Tracing things other than rays

- Same as traditional ray tracing except
 - Intersection is a surface
 - Surfaces spawn more cones, beams, pencils
 - Advantage: More realistic
 - Disadvantage: Increase in complexity of geometric calculations
 - e.g., in cone tracing, calculations not only involve an intersection, but also the ratio between the cross-section of beam and area of intersection of object is needed

Cone Tracing Examples

http://www.cs.uaf.edu/~genetti/

Note the fuzzy reflections and soft shadows

Stochastic Ray Tracing

- Introduce randomness in ray spawning
- Kajiya86 used for solving rendering equation
 - Either reflection or refraction is spawned
 - Reflection rays can be spawned in diffuse direction
 - Multiple “paths” per pixel
Distributed Ray Tracing

- Unified
 - Blurred reflections
 - Blurred refraction
 - Soft shadows
 - Depth of field
 - Motion blur
- Uses stochastic sampling to get rid of ray traced look.
- Uses ray bundle, but size limited stochastically

Distributed Ray Tracing

- “Jitter” sampling
 - Trades aliasing for noise!
 - Use Poisson “noise” to jitter values from original “fixed” position
 - Using “jittering” in
 - Initial ray generation
 - Reflection/transmission ray generation
 - Shadow ray generation
 - Jitter over time.

Distributed Ray Tracing

- Initial ray generation
 - *Supersample* - instead of 1 ray per pixel, shoot 16 rays per pixel.
 - Initial ray positions are not evenly spaced, rather distributed stochastically within pixel using “jittering”

Distributed Ray Tracing

- Jittered ray generation
 - Using a lens/camera model
 - Simulation of depth of field
 - First use of non-pinhole camera model in ray tracing
Distributed Ray Tracing

Depth of Field

Notice different size circles of confusion caused by different sized lens

• Jittered ray generation

Distributed Ray Tracing

• Jittered Reflection
 – Send out multiple rays jittered about the real reflection direction
 – Contribution of each ray to intensity weighted by a predefined “importance” function - associated with the object’s reflectance properties

Distributed Ray Tracing

• Jittered Reflection

Jittered Reflection

1 reflection ray 10 reflection rays 20 reflection rays 50 reflection rays

Allen Martin, WPI
Jittered Transmission

- 1 transmission ray
- 10 transmission rays
- 20 transmission rays

Distributed Ray Tracing

- Jittered shadow rays
 - Multiple jittered rays sent out toward light sources
 - Contribution of each determined by a predefined importance function associated with the light
 - Shadow rays return fraction of light seen rather than yes/no
 - Results in soft shadows

Distributed Ray Tracing

Soft Shadows

[Cook84]

Distributed Ray Tracing

Jittering in time
 - Do ray tracing over a duration of time in which objects may move.
 - Uses same rays repeatedly over time interval
 - Results in motion blur

Distributed Ray Tracing

Motion Blur

[Cook84]
Distributed Ray Tracing - Summary

- Stochastic sampling ("jitter sampling")
- Apply jittering to:
 - Initial ray selection
 - Jittering on image plane + use of camera/lens model
 - Reflection / Transmittance
 - Shadow Rays
 - Over time

Photon Mapping - Motivation

- Combines “backward”/ “reverse” ray tracing with stochastic ray tracing
- Used to simulate the interaction of light with a variety transparent substances (caustics)
 - Glass
 - Water
 - Diffuse Inter-reflections between illuminated objects
 - Effects of particulate matter
 - Smoke
 - Water vapor

Photon Mapping

- Henrik Wann Jensen 95/96
- Simulates the transport of individual photons emitted from light sources
- Photons bounce off specular surfaces
- Photons deposited on diffuse surfaces
- Photons collected by ray tracing from eye

Photon Mapping - Caustics

- Pattern of light focused on a surface after having original light path bent by intermediate surface.
- For example, a glass of wine on a table changes the pattern and the color of light

Photon Mapping

What is a Photon?

- A photon p is a particle of light that carries flux $\Delta \Phi_p (\mathbf{x}_p, \omega_p)$.
 - Power: $\Delta \Phi_p$ - magnitude (in Watts)
 - and color of the flux it carries, stored as an RGB triple
 - Position: \mathbf{x}_p - location of the photon
 - Direction: ω_p - the incident direction used to compute irradiance
- Photons vs. rays
 - Photons propagate flux
 - Rays gather radiance
Photon Mapping Algorithm

Photon Map

- **Photon tracing**
 - Light packets sent from light sources
 - When intersect surface, store in *photon map*:
 - 3D coordinate of intersection
 - Incoming direction
 - Energy
 - Energy absorbed on bounces and refraction
 - Similar to reverse ray tracing
- **Rendering**
 - Ray tracing for direct illumination
 - Object intersected by ray
 - Check if in range of stored photons – yes, add energy
 - Photon map visualization
 - Indirect bounce

- **A photon map** is a data structure that stores all distributed photons
- Often three photon maps are used
 - One for caustics
 - One for indirect illumination
 - One for volume caustics
- For efficiency, photon direction is often constrained
 - Only sent in direction of objects known to cause caustics

Photon Mapping - Summary

- Combines “backward”/“reverse” ray tracing with stochastic ray tracing to generate caustics
- Cost effective compared to other methods

The Light of Mies van der Rohe

Parallel Computing

- **What is it?**
 - Solving a problem by dividing it into tasks to be handled by separate processors
- **Why use it?**
 - Performance
 - Goal linear speedup

Parallel Hardware

- **SIMD**
 - Same instruction executed in lockstep fashion on different data
- **MIMD**
 - Different instructions executed on different data
 - MIMD-SM
 - MIMD-DM
Parallel vs. Distributed

Issues in Parallel Computing: Communication

- More processors means more organization is required (Consider working on a team of 10 people vs. 1000 people)
- For performance, each processor must have a lot of work to do in comparison with any need to communicate to another processor.
- Keep all processors busy (load balancing)

RIT Ray Tracing 1991

- 975 objects
- 3 light sources
- 2048 X 2048 pixels
- Sun 4/490 – 1991
- 1.5 hours CPU time

RIT Fractals and Ray Tracing 1991

- 87,000 objects
- 5 light sources
- 1024 X 1024
- Sun 4/490 – 1991
- 18 hours CPU time

Ray Tracing

- Ray tracing lends itself nicely to parallel programming because the work can easily be sub-divided
 - Per pixel calculation, i.e., not dependent on other pixels
 - Potentially large calculation time
- How to distribute work?

Image Space Partitioning

Strip = Section of Viewing Plane per Processor
Data Parallel strip division

Object Space Partitioning

Voxel = Section of scene data for processor

Object Partitioning

Reinhard’s Parallel Example
Adaptive Partitioning to Load Balance

Partitioning for Ray Tracing

- Object Space Partitioning
 - May be necessary if very complex scene!
 - Less local processor memory needed for scene data
 - High delay when passing rays between processors means crossing machines
- Object Partitioning
 - Same as object space (just divided differently)
- Image Space Partitioning
 - Each local processor must have complete scene data
 - Messages are only sent to divide and reassemble, not while doing the work
Partitioning for Parallel Ray Tracing

- Image space partitioning is the best choice
- When might we use the others?
 - Object Space Partitioning: when there is not enough local processor memory for the scene data
 - Object Partitioning: same as above when object complexity is similar

Advanced Ray Tracing

- Summary
 - Object-Ray Intersection
 - Adaptive Depth Control
 - Bounding Volume
 - Spatial Subdivision
 - Sampling problem
 - Backward Ray Tracing
 - Cone / Pencil / Beam tracing
 - Stochastic Ray Tracing
 - Distributed Ray Tracing
 - Photon Mapping
 - Parallel Ray Tracing