
1

Procedural Shading

The 2nd half

• Cook’s Shade Trees
• Ken Perlin: PSE and Noise
• Shader Languages

Shading

• So far we have considered:
– BRDFs
– Shading & Illumination Models
– Texture Maps

• Today we start to look at shaders that handle shading
(and texturing) procedurally
– Surface characteristics are defined by a function

• Shading model – simulates behavior of surface material w.r.t.
diffuse and specular reflection

• Pattern generation - texture pattern and sets surface property
values

Procedural Shading

Advantages
• Compact
• Resolution Independent
• Unlimited Extent
• Parameterizable -> class

of textures

Disadvantages
• Programming=>

debugging
• Unpredictable results
• Time vs. space tradeoff

(can take a long time)

Shading (and/or texture) determined by a
function

• First procedural shading system
• Allowed use of different shading model for each

surface as well as light sources and atmospheric
considerations, i.e., light and atmosphere trees

• Traditional shading techniques could be combined
• Handled complexity and simplicity in same image

– Color and transparency
– Textures
– Reflection mapping
– Displacement mapping
– Solid texturing

Shade Trees [Cook84]
• Shading calculated by combining basic functional

operations using appearance parameters
• Operations are organized in a tree (directed acyclic

graph).
– Nodes – Operations

• Uses zero or more appearance parameters as input
• Produces one or more appearance parameters as output

– Children – operands – basic geometric info: normals, location,
etc.

• Result of shade tree evaluation is a color
• Evaluating equivalent to parsing tree (post order -

compiler design)

Shade Trees [Cook84]

2

Procedural Shading – Shade Trees

• Basic operations include
– Vector operations (normalize, dot product / cross

product)
– Arithmetic operations
– Interpolation / “mix”
– stochastic functions
– Variables (points in eye or world)
– Expandable dynamically

• Basis for Renderman Shading Language

Procedural Shading – Shade Trees

[Cook84]

Procedural Shading – Shade Trees

• Shade trees - Phong model

speculardiffuseambient

V)R(N)S()(∑∑ •+•+=
i

k
iisi iidaa

eLkLkLkVL

+

ambient diffuse specular

ka kd S N ks R V ke

Procedural Shading – Shade Trees

• Shade Trees - example…copper

[Cook84]

Procedural Shading – Shade Trees

Shade trees - example code: for “metal” shade tree

[Cook84]

Surface Command – designates shade tree
for object (overrides default values)

Built into language

Procedural Shading – Shade Trees

• Shade trees – “mix” uses one of inputs to interpolate
between the other two

[Cook84]

3

Procedural Shading – Shade Trees

• Are parameterizable
• Have access to “important” attributes of the point

in question
– Normals, viewer vector, light vectors

• Can be functionally combined
– Output of one shade tree can be input to another by

attaching as a branch
– Nothing more that a parse tree for a function
– Functional Programming (LISP)

Procedural Shading – Shade Trees

• Effectively using shade trees is more of an art
than a science.

[Cook84]

• Attempt to create a language around functional shade
generation
– C like language
– Included control structures

• Originally designed to work on pixels of an image as a
postprocessor
– Input image -> PSE (filter) -> output image
– Input image has variable list: surface identifiers, point –

location, normal, etc.

Perlin’s Pixel Stream
Editor (PSE)

Procedural Shading – Perlin’s PSE

• Example
if surface == 1

color = [1 0 0] * max(0.1, dot(normal,[1 0 0])

else

color = [0 0 0.1]

Produces diffusely shaded red object lit from positive x
direction on a dark blue background.

color normal

Variable related to input image; others point, normal

Procedural Shading – Perlin’s PSE

• Any space function can be thought of as representing a
solid material

• If evaluated at visible surface points, get sculpture!
– Shape and texture independent
– Small code!

• PSE programs are evaluated in 3D space to produce
such solid textures
– Knowledge of x,y,z coordinates
– Knowledge of important “vectors” at surface

Procedural Shading – Perlin’s PSE

• But the biggest contribution from the PSE was
– THE NOISE

For, tomorrow, he knew, all the Who girls
and boys
Would wake bright and early. They'd rush for
their toys!
And then! Oh, the noise! Oh, the noise!
Oh, the Noise! Noise! Noise! Noise!
That's one thing he hated! The NOISE!
NOISE! NOISE! NOISE!

How the Grinch Stole Christmas

4

Procedural Shading – Perlin Noise

• Observation:
– Most things in the world have some sort of

random or stochastic component to them
– A procedural shading system requires the use of

randomness (“noise”) for realism.
– Need more than simple random number

generator.

Procedural Shading – Perlin Noise

• What is noise
– Random signal with rich frequency distribution
– Applet

http://graphics.lcs.mit.edu/~legakis/MarbleApplet/marbleapplet.html

– Types of noise:
• White – uniform frequency
• Pink – filtered
• Gaussian – based on Gaussian distribution

– None appropriate for shader use

Procedural Shading – Perlin Noise

• Perlin on noise:
– “Noise appears random but it is not. If it were really

random, then you’d get a different result each time you call
it. Instead it is “pseudo-random” – it gives the appearance
of randomness”

– “Noise is a mapping from Rn→ R – you input an n-
dimensional point with real coordinates and it gives you a
real value. Currently, the most common uses is for n=1, 2,
and 3. The first is used for animation, the second for cheap
texture hacks, and the third for less-cheap texture hacks.”

Procedural Shading-Noise Properties

• Repeatable
• Known range [-1, 1]
• Band limited / scalable
• Doesn’t exhibit obvious periodicities
• Statistically invariant under translation
• Statistically invariant under rotation

Procedural Shading-Perlin Noise

• Controllable random number generator
• Emphasized importance of stochastic functions

in texture design
• Very efficient in time and space
• Implemented as a basic operation in the MMX

chipset and other graphics hardware
• Won Ken an Academy Award

Procedural Shading-Perlin Noise

• “Controlled” Noise function
– White noise = noise at all frequencies
– Control the frequency of the noise used
– e.g. noise (2x) will contain twice as much

frequency (detail) as noise(x)

5

Procedural Shading-Perlin Noise

• Noise frequency and detail

Procedural Shading-Perlin Noise

• Perlin Noise
– Returns a scalar value between -1 and 1
– takes a 3d vector as an argument
– float noise3 (float [3] vec)

Procedural Shading-Perlin Noise
• 3D lattice (3D array) with 4 pseudorandom real

numbers per point in the array
• for each point (x0,y0,z0) we assign a set of 4

pseudorandom numbers (a, b, c, d).
• Compute d’ = d - (ax0+by0+cz0)
• noise (x,y,z)

– if (x, y, z) is on the lattice, noise (x,y,z) = d
– if (x,y,z) is NOT on the lattice, the values of (a,b,c,d) are

interpolated from the (a,b,c,d) values of neighboring lattice
points. Then noise(x,y,z) = ax + bx +cz +d’ using the
interpolated (a,b,c,d)

Procedural Shading-Perlin Noise

• Perlin noise - Lattice

Procedural Shading-Perlin Noise

• Perlin has further optimized using look up tables
• Complete “C” code (approx 150 lines) on Web at:

– http://mrl.nyu.edu/~perlin/doc/oscar.html#noise

• Perlin has since revised the basic noise algorithm in
order for efficiency, functionality, and ease of
hardware implementation.

• Perlin has since applied same paradigm to:
• Solid Modeling
• Animation / Gesturing

Procedural Shading – Perlin Noise

Paul Burke, 2000

Increasing harmonics of
1-D Perlin noise

Sum of 1st 8 harmonics

6

Paul Burke, 2000

Procedural Shading – Perlin Noise

Sum

Procedural Shading-Perlin Noise
• Example 1 – Spotted Donut -No detail outside certain

size range

Color = white * noise (point)

[Perlin85]

Vector

Procedural Shading-Perlin Noise

• Example 2 – Bozo’s Donut

Color = Colorful(noise (k*point))
[Perlin85]

Constant multiplier

Procedural Shading-Perlin Noise

• Dnoise – Vector valued differential of noise
signal, i.e., gradiant/derivative of noise
function

• Dnoise (x,y,z) = (dNoise/dx, dNoise/dy,
dNoise/dz)

• Good for modifying normal vector (bump
mapping)

Procedural Shading-Perlin Noise

• Dnoise example – Bumpy Donut

Normal += Dnoise (point)

[Perlin85]

noise sin(x + sum 1/f(|noise|))

sum 1/f(noise) sum 1/f(|noise|) Perlin web

7

Creating Wrinkles

• Adding successive noise at different but
regular frequencies

• 1/f, self-similar quality (Fractal-like…more on
fractals later)

∑
=

=

=
N-1i

i
i

i xx
0 a

)bNoise()NOISE(

Creating Wrinkles

• Perlin example: Wrinkled Donut

[Perlin85]

Procedural Shading - Perlin
• Turbulence used to model – stocastic components

– Water
– Clouds
– Bubbles
– Falling leaves
– Swaying trees
– Flocks of birds
– Rippling muscles

[Perlin85]

Procedural Shading - Perlin

• Perlin - turbulence example

Function marble(point)

x = point[1] +

turbulence (point)

return marble_color(sin x)

[Perlin85]

Perturbs the layer

Procedural Shading-Perlin Noise

• Perlin Noise Demo Applet
http://mrl.nyu.edu/~perlin/noise/

• Perlin Noise Applied to Animation
http://mrl.nyu.edu/~perlin/facedemo/

Procedural Shading - Perlin

• Summary
– Compact, functional shading specifications
– Efficient “controllable” noise function
– Noise adds to complexity and realism
– Building good procedural textures is more of an

art than a science.

8

Procedural Shading - Noise

• For a discussion on other noise functions
see:
– Ebert, et al, Texture and Modeling: A

Procedural Approach, Chapter 2
• A nice discussion on Perlin Turbulence:

– http://astronomy.swin.edu.au/~pbourke/texture/perlin/

Shading Languages

• Renderman Shading Language
– Grew out of shade trees
– Goals

• Abstract shading language based on ray optics.
Independent of any specific algorithm or
implementation

• Interface between rendering program and shading
model

• High level language that is easy to use.

Shading Language

• RenderMan shaders
– Renderman provides a complete programmable

model of light transport.
• More next time

– Surface reflectance shaders
• Compute the light reflected from a surface in a

given direction, i.e., programmable BRDFs .

Runtime architecture

• Renderman consists of three parts:
• Functional scene description mechanism (API for C)
• RenderMan is an Interface Specification!

– State Model Description – Maintains a current graphics
state that can be placed onto a stack.

– Geometry is drawn by utilizing the current graphics state.

• File format - RenderMan Interface Bytestream
(RIB)

• Shading Language and Compiler.

Runtime architecture

Rendering
application

RenderMan

Graphics
state

Shader 1

Shader 2

Shader 3

slc

Shader / render link

Shader
“object”
file

Shader
“object”
file

Shader
“object”
file

Renderman Shading Language

• Creating effective shaders with the
Renderman Shading Language is more of
an art than a science.

9

Shading Languages

• Many commercial renderers (e.g. Ray
Dream 3D / Lightwave) now come with a
shading / plugin API.

• Allows shaders to be written using a native
programming language (like C or C++).

• Using these APIs effectively is more of an
art than a science.

Real Time Shaders

• Programmable shading capability is now built in to
current graphics hardware (GPU)
– Same flavor as Renderman shaders.

• However, model is far less comprehensive.

– Examples
• Cg – nVidia
• RenderMonkey – ATI
• OpenGL Shader language – hardware independent

– Using real time shaders effectively is more of an art than a
science.

Next time

• In depth look at the RenderMan shader
language.

