Procedural Modeling

Proceduralism in Computer Graphics
- Fixed models/primitives not robust enough
- Quest for extensibility and programmability
- Use a function or procedure to define the surface or structure of an object.
- Procedural Methods
 - Shading
 - Modeling
 - Animation

Procedural Models
- Topics
 - Fractals
 - Fractal terrains
 - L-Systems
 - Volumetric Models
 - Hypertexture
 - Particle Systems

Fractals
- A language of form for shapes and phenomena common in Nature
- “Geometrical complex object, the complexity of which arises through the repetition of form over some range of scale”.
- Statistical self-similarity at all scales

Why Fractals?
- Procedural way to add complexity to a scene
- Elements of nature posses fractal properties.
- Used to model nature
 - Terrain
 - Clouds
 - Coastlines
 - Trees / Landscaping

Fractals
- Repetition of some underlying shape (basis function) at different scales
- Kock Snowflake Applet

Foley/VanDam/Feiner/Hughes
Fractals – The Mandelbrot Set

- Plot of a recursive mathematical function in the complex plane
 \[z_n = z_{n-1}^2 + c \]
- For each complex number, the function will:
 - Move quickly to infinity (outside of the set)
 - Move slowly to infinity (on the border of the set)
 - Remain near the origin (inside the set)
- Create image by coloring based on how many iterations it takes to indicate divergence towards infinity.
- Function is self-similar as we zoom into different areas of the plot on the complex plane.

Fractals

- Fractals - Mandelbrot Set
 - Fractint

Fractal Terrain

- Fractals -- a simple example

Fractal Terrain

- Fractals - extend to 2d
Fractal Terrain

- Paul Bourke

Fractal Terrain

Fractal Terrain

Fractal Terrain - Vol Libre Ridge

Fractals

- Fractal comes from fractal dimension

\[a \cdot b \]

- \(a \) = Euclidean dimension
- \(b \) = fraction of filling up next dimension
Fractal Modeling

- Fractal modeling
 - Like Mandelbrot set, can zoom infinitely
 - Render at resolution that is most appropriate
 - Instant anti-aliasing.
 - Can model a whole planet procedurally

Fractal Modeling

- [Musgrave]

Fractals

“If one assumes that a certain error (e.g., pixel-sized) in the ray-surface intersection is acceptable, one can directly ray-trace a procedurally-defined height field with essentially perfect level of detail.”

-- Ken Musgrave

Fractals

- For more info:
 - [Fournier82]
 - Pietgen, *The Science of Fractal Images*
 - Pietgen, *The Beauty of Fractals*
 - Ebert, et al, *Modeling & Texturing*...
Grammar Based Systems

• Building of models based on formal language grammars
• Method for creating fractals
• Grammar consists of:
 – Set of characters
 – Productions rules
 – Starting word

Grammar Based Systems - Example

Characters: {A, B, [,]}
Rules: A -> AA
Start word B

Iterations:
0: B

Grammar Based Systems

• But how does this help us create models?
• Assign a drawing action to each character:
• L-System (Lindenmeyer) used to create tree-like structures:
 – F move forward and draw
 – f move forward and do not draw
 – + increase angle with angle increment
 – - decrease angle by angle increment
 – [push state (i.e. branch)
 –] pop state (i.e finish branch)

L-System Ferns

Grammar Based Systems

• L-Systems
 – F=F[+F]F[-F]F
 – Applet
 • http://www-sfb288.math.tu-berlin.de/vgp/javaview/vgp/tutor/lsystem/PaLSystem.html

Grammar Based Systems

• L-Systems
 – Note that structures created using L-Systems are fractal like in the sense that they are self-similar at different levels
 – Self-similarity achieved by repeatedly applying production rules
Grammar Based Systems

- Koch curve as an L-system
 - $F = F + F - F + F$
 - http://www.arcytech.org/java/fractals/lsystems.shtml

L-System Trees

Grammar-Based Systems

- For more info:
 - Prusinkiewicz, Lindenmayer systems, fractals, and plants
 - Prusinkiewicz and Lindenmeyer, The Algoritmic Beauty of Plants

Questions?

Volumetric Models

- Not all objects are “solid” models
 - water
 - fire
 - clouds
 - Rain
- Objects exists in a volume
 - Hypertexture
 - Particle Systems

Hypertexture [Perlin89]

- Extension of procedural textures
- Between surface + texture, i.e., spatial filling/volumetric
- Objects modeled as distribution of density
 - hard region - objects completely solid
 - soft region - object shape is malleable using a toolkit of shaping functions and CSG style operators to combine shapes
Hypertexture Uses

• Model shapes that don’t have a well-defined boundary surface
 – Fur/hair
 – Fire/clouds/smoke
• Complex surface volumetrics
 – Fluid flow
 – Erosion effects

Hypertexture

• D(x) - Object Density Function over \mathbb{R}^3
 – $D(x)$ for all points x in 3D space $[0,1]$
 – Density of 3D shape
 – $D(x) = 0$ for all points outside the surface
 – $D(x) = 1$ for hard region of the object
 – $0 < D(x) < 1$ for soft region of the object (fuzzy region)

Hypertexture

• Toolbox of base DMFs
 – Bias – up / down control
 – Gain – controls gradient
 – Noise (controlled randomness)
 • Won Ken an Academy Award!
 – Turbulence
 • Sum of noise at variety of frequencies
 – Mathematical functions

Hypertexture Noise Examples

- Noisy
- 2^{nd} frequency, $1/2$ amplitude
- High Amplitude, Noisy Sphere
- Fractal, noise - \sum many fs

Hypertexture Example - Fire

$D(x) = \text{sphere}(x(1 + \text{turbulence}(x)))$

Hypertexture Example - Fur/Hair

Red = low density
Yellow = high
Tribble

Here noise displaces x before projecting;
uses variable to control curliness
Animated Hypertexture – *Pyroclastic*

Animated Hypertexture – *Fireball1*

Animated Hypertexture – *Cloud Dog*

Hypertexture

- Further Reading
 - [Perlin89]

Particle Systems [Reeves83]

- Another volumetric modeling technique
- Abstraction provides control of animation and specification of objects
- Good for modeling volumetric natural phenomena:
 - water
 - fire
 - clouds
 - Rain
 - Snow
 - Grass
 - Trees

What are Particle Systems?

- A collection of geometric particles
- Algorithms governing creation, movement and death
- Attributes
- AND, randomness … can be applied to any of the above!
Attributes of Particles

- Initial Position
- Movement (velocity, rotation, acceleration, etc.)
- Color and Transparency
- Shape
- Volume
- Density
- Mass
- Lifetime (for particles)

Particle Systems

- The first example of particle systems was in the movie *Star Trek II: The Wrath of Khan*
- Particle systems were used to represent a wall of fire.

Particle Systems - *The Wrath Of Kahn*

![Impact point](Reeves 83)

Why use Particle Systems?

- Excellent way to model complex natural objects.
- Allow us to model detailed man-made objects.
- Provides a solution to fuzzy object modeling problem.

Application of Particle Systems
Particle Systems - Fireworks

[Reeves 83]

Particle Systems - Plants: White Sand

[Reeves 83]

Fire and Smoke

Andreason & Zucca, CG2 -19962

Comet

Andreason & Zucca, CG2 -19962

Water

Andreason & Zucca, CG2 -19962

Death Star

Andreason & Zucca, CG2 -19962
Procedural Models

• Summary
 – Use of a function to define objects
 – Types
 • Fractals/L-Systems
 • Volumetric Models
 – Hypertexture
 – Particle Systems
 – Good for
 • Natural objects
 • Landscapes
 • Non-solid type objects