Returned 96 matches (100 formulae, 81 docs)
    Lookup 13.759 ms, Re-ranking 594.127 ms
    Found 173014 tuple postings, 81772 formulae, 15774 documents
[ formulas ] [ documents ] [ documents-by-formula ]

1.0000
0.0000
27.0000
L ( λ , α , s ) = n = 0 exp ( 2 π i λ n ) ( n + α ) s .

0.6400
-4.0000
16.0000
Φ ( z , s , α ) = n = 0 z n ( n + α ) s .

0.6021
-4.0000
12.0000
Φ ( z , s , q ) = k = 0 z k ( k + q ) s

0.6021
-8.0000
12.0000
Z ( P , Q , s ) = n = 1 f n ( P ) f n ( Q ) λ n s

0.5469
-4.0000
10.0000
Z ( λ , ν ) = j = 0 λ j ( j ! ) ν .

0.5424
-2.0000
12.0000
ζ ( s , a ) = n = 0 1 ( n + a ) s

0.5424
-2.0000
10.0000
ζ ( s , q ) = k = 0 1 ( k + q ) s

0.5424
-5.0000
11.0000
ζ ( s , t ) = n = 1 H n , t ( n + 1 ) s

0.5263
-11.0000
9.0000
S ν ( x ) = k = 0 sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) ν

0.4884
-3.0000
10.0000
L ( E , s ) = n = 1 a n n s .

0.4803
-4.0000
12.0000
ζ ( s , q ) = n = 0 1 ( q + n ) s .

0.4713
-4.0000
9.0000
f ( x ) = n = 0 s ( 2 n x ) 2 n

0.4713
-5.0000
9.0000
blanc ( x ) = n = 0 s ( 2 n x ) 2 n ,

0.4713
-12.0000
9.0000
Ξ ( μ , V , β ) = n = 0 e β μ n Z ( n , V , β ) ,

0.4713
-14.0000
9.0000
L ( M , V , s ) = μ { M - 0 } / V sign N ( μ ) | N ( μ ) | s

0.4660
-5.0000
8.0000
NPV ( i , N ) = t = 0 N R t ( 1 + i ) t

0.4504
-8.0000
8.0000
Mortgage Yield: ri such that P = n = 1 N C ( t ) ( 1 + r i / 1200 ) t - 1

0.4416
-3.0000
10.0000
L ( s , E ) = n = 1 a n n s .

0.4335
-6.0000
8.0000
S ρ ( z ) = n = 0 m n z n + 1 .

0.4335
-7.0000
8.0000
F ( w ) = n = 0 f n Ψ n w n + 1 .

0.4335
-7.0000
7.0000
H N , q , s = i = 1 N 1 ( i + q ) s

0.4335
-9.0000
9.0000
t n = m = 0 G m n ( m + 1 ) ( m + 2 ) .

0.4276
-4.0000
10.0000
L ( χ , s ) = n = 1 χ ( n ) n s

0.4276
-4.0000
7.0000
NPV ( i ) = t = 0 N R t ( 1 + i ) t

0.4152
-4.0000
11.0000
L ( s , χ ) = n = 1 χ ( n ) n s .

0.4124
-3.0000
8.0000
φ ( s ) = n = 1 a n n s .

0.4124
-3.0000
8.0000
F ( s ) = n = 1 f ( n ) n s
g ( s ) = n = 1 a ( n ) n s

0.4124
-4.0000
8.0000
ζ 2 ( s ) = n = 1 d ( n ) n s

0.4124
-5.0000
9.0000
log 2 = n = 1 ζ ( 2 n ) - 1 n .

0.4124
-6.0000
9.0000
ψ 1 ( z ) = n = 0 1 ( z + n ) 2 ,

0.4124
-6.0000
8.0000
F χ ( s ) = n = 1 χ ( n ) a n n s

0.4028
-3.0000
9.0000
L ( s , Δ ) = n = 1 a n n s

0.3957
-4.0000
8.0000
exp ( z ) = n = 0 z n n ! .

0.3957
-5.0000
8.0000
exp p ( z ) = n = 0 z n n ! .

0.3957
-6.0000
9.0000
e q x = n = 0 x n [ n ] q ! .

0.3957
-6.0000
8.0000
R = exp ( A ) = n = 0 A n n ! .

0.3957
-8.0000
7.0000
f ( x ) = n = 0 a n M ( n + 1 ) x n
f ( t ) = n = 0 a n M ( n + 1 ) x n

0.3957
-9.0000
8.0000
cos ( φ ) = n = 0 ( - φ 2 ) n ( 2 n ) ! ,

0.3957
-10.0000
9.0000
β ( s ) = n = 0 ( - 1 ) n ( 2 n + 1 ) s ,

0.3892
-6.0000
8.0000
D G ( f ; s ) = n = 1 f ( n ) n s

0.3892
-7.0000
8.0000
N P V = n = 0 N C n ( 1 + r ) n = 0

0.3892
-12.0000
9.0000
x x = exp ( x log x ) = n = 0 x n ( log x ) n n ! .

0.3755
-4.0000
10.0000
L ( s , χ ) = n = 1 χ ( n ) n s

0.3755
-19.0000
10.0000
L ( s , a ) = n = 1 a ( n ) n s = p ( 1 - a ( p ) p s ) - 1 ,

0.3743
-3.0000
8.0000
ζ ( s ) = n = 1 1 n s .

0.3743
-5.0000
8.0000
ζ S ( s ) = n = 1 1 λ n s .

0.3743
-6.0000
9.0000
1 n = r = 1 1 ( n + 1 ) r .

0.3743
-6.0000
8.0000
NPV = n = 0 N C n ( 1 + r ) n = 0

0.3743
-7.0000
8.0000
DG ( a n ; s ) = n = 1 a n n s .

0.3743
-10.0000
9.0000
ζ ( 2 s ) ζ ( s ) = n = 1 λ ( n ) n s .

0.3743
-12.0000
9.0000
ζ 4 ( s ) ζ ( 2 s ) = n = 1 d ( n ) 2 n s .

0.3743
-13.0000
9.0000
σ 1 - s ( m ) ζ ( s ) = n = 1 c n ( m ) n s .

0.3743
-17.0000
10.0000
Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1

0.3743
-17.0000
8.0000
G ( a , 0 , c ) = n = 0 c - 1 ( n c ) e 2 π i a n / c .

0.3743
-20.0000
10.0000
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n

0.3579
-1.0000
9.0000
n = 0 1 ( n + a )

0.3579
-5.0000
7.0000
exp ( ν ) = n = 0 ν * n n !

0.3579
-17.0000
9.0000
e 1 - e x = n = 0 A n ( x ) n ! ( 1 - x ) n + 1 .

0.3506
-6.0000
7.0000
NPV = t = 0 n C t ( 1 + r ) t = 0

0.3361
-6.0000
8.0000
cosh x = n = 0 x 2 n ( 2 n ) !

0.3361
-7.0000
8.0000
1 ζ ( s ) = n = 1 μ ( n ) n s

0.3361
-8.0000
8.0000
1 ζ ( s ) = n = 1 μ ( n ) n s ,

0.3361
-10.0000
8.0000
sinh x = n = 0 x 2 n + 1 ( 2 n + 1 ) !

0.3361
-10.0000
8.0000
Z ( s ) = n 0 1 ( n 2 ) s = 2 ζ ( 2 s )

0.3361
-11.0000
8.0000
ζ ( s - 1 ) ζ ( s ) = n = 1 φ ( n ) n s

0.3361
-11.0000
8.0000
1 ( x ; q ) = n = 0 x n ( q ; q ) n

0.3361
-12.0000
8.0000
ζ 3 ( s ) ζ ( 2 s ) = n = 1 d ( n 2 ) n s

0.3361
-12.0000
8.0000
ζ ( s - k ) ζ ( s ) = n = 1 J k ( n ) n s

0.3361
-12.0000
8.0000
1 L ( χ , s ) = n = 1 μ ( n ) χ ( n ) n s

0.3361
-16.0000
9.0000
1 2 = k = 0 ( - 1 ) k ( π 4 ) 2 k ( 2 k ) ! .

0.3361
-24.0000
10.0000
Z = n = 0 ( 8 n + 1 ) ( 1 2 ) n ( 1 4 ) n ( 3 4 ) n ( n ! ) 3 9 n

0.3200
-4.0000
8.0000
x = n = 0 a n 10 n .

0.3200
-5.0000
8.0000
e x = n = 0 x n n ! .

0.3200
-5.0000
7.0000
E = n = 1 σ 0 ( n ) 2 n

0.3200
-8.0000
8.0000
exp X = e X = n = 0 X n n ! .

0.3200
-9.0000
9.0000
n = 0 2 n + 3 ( n + 1 ) ( n + 2 )

0.3200
-10.0000
5.0000
g ( x ) = n = 1 f ( n ) exp ( 2 π i n x )

0.3200
-11.0000
8.0000
e x f ( t ) = n = 0 p n ( x ) n ! t n

0.3200
-12.0000
8.0000
n = 0 u n = n = 0 p ( n ) q ( n ) ,

0.3200
-15.0000
9.0000
n = 0 ( - 1 ) n ( n + 1 ) ( n + 2 ) = 2 ln 2 - 1.

0.2821
-5.0000
7.0000
e x = n = 0 x n n !
e z = n = 0 z n n !

0.2821
-14.0000
8.0000
π 2 sin 2 π z = n = - 1 ( z - n ) 2 .

0.2821
-21.0000
8.0000
D e D - 1 = log ( Δ + 1 ) Δ = n = 0 ( - Δ ) n n + 1 .

0.2595
-6.0000
6.0000
L χ ( s ) = χ ( n ) a n n s

0.2595
-7.0000
7.0000
( 1 - X ) - 1 = n = 0 X n .

0.2595
-13.0000
7.0000
ζ ( s ) ζ ( 2 s ) = n = 1 | μ ( n ) | n s

0.2595
-13.0000
4.0000
Φ ( exp ( 2 π i λ ) , s , α ) = L ( λ , α , s ) .

0.2595
-17.0000
8.0000
Z = n = 0 ( 6 n + 1 ) ( 1 2 ) n 3 4 n ( n ! ) 3

0.2442
0.0000
7.0000
L ( λ , α , s )

0.2442
-4.0000
7.0000
e = n = 0 1 n !

0.2442
-5.0000
7.0000
e = n = 0 1 n !

0.2442
-6.0000
7.0000
e = n = 0 1 n ! 2.71828

0.2208
-7.0000
7.0000
1 1 - w = n = 0 w n .

0.2208
-8.0000
7.0000
𝐀 - 1 = n = 0 ( 𝐈 - 𝐀 ) n .

0.2208
-11.0000
7.0000
n = 0 a σ ( n ) = n = 0 a n .

0.2062
-16.0000
6.0000
1 ( 1 - z ) α + 1 = n = 0 ( n + α n ) z n