Returned 95 matches (100 formulae, 81 docs)
    Lookup 434.350 ms, Re-ranking 0.192 ms
    Found 1285716 tuple postings, 226251 formulae, 23811 documents
[ formulas ] [ documents ] [ documents-by-formula ]

L ( λ , α , s ) = n = 0 exp ( 2 π i λ n ) ( n + α ) s .
Doc 1
0.9549, 1.9429
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
Φ ( z , s , q ) = k = 0 z k ( k + q ) s
Doc 2
0.5000, 0.8564
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
Doc 3
0.5000, 0.8478
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Hurwitz_zeta_function.html
Φ ( z , s , α ) = n = 0 z n ( n + α ) s .
Doc 1
0.9549, 1.9429
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
Doc 4
0.4887, 0.4887
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Catalan's_constant.html
ψ 1 ( z ) = n = 0 1 ( z + n ) 2 ,
Doc 5
0.3564, 0.3564
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Trigamma_function.html
ζ ( s , q ) = k = 0 1 ( k + q ) s
Doc 2
0.5000, 0.8564
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Riemann_zeta_function.html
ζ ( s , a ) = n = 0 1 ( n + a ) s
Doc 6
0.3564, 0.3564
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Ramanujan's_master_theorem.html
ζ ( s , q ) = n = 0 1 ( q + n ) s .
Doc 3
0.5000, 0.8478
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Hurwitz_zeta_function.html
NPV = t = 0 n C t ( 1 + r ) t = 0
Doc 8
0.3402, 0.3402
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Rate_of_return.html
NPV = n = 0 N C n ( 1 + r ) n = 0
Doc 7
0.3402, 0.3402
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Internal_rate_of_return.html
1 n = r = 1 1 ( n + 1 ) r .
Doc 9
0.3333, 0.3333
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Engel_expansion.html
NPV ( i , N ) = t = 0 N R t ( 1 + i ) t
Doc 10
0.3269, 0.6537
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Net_present_value.html
NPV ( i ) = t = 0 N R t ( 1 + i ) t
Doc 10
0.3269, 0.6537
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Net_present_value.html
w i = j = 2 n a j ( i + 1 ) j ,
Doc 11
0.3263, 0.3263
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Distributed_lag.html
H N , q , s = i = 1 N 1 ( i + q ) s
Doc 12
0.3179, 0.3179
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Zipf–Mandelbrot_law.html
Mortgage Yield: ri such that P = n = 1 N C ( t ) ( 1 + r i / 1200 ) t - 1
Doc 13
0.3117, 0.3117
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Mortgage_yield.html
β ( s ) = n = 0 ( - 1 ) n ( 2 n + 1 ) s ,
Doc 14
0.3057, 0.3057
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Dirichlet_beta_function.html
β ( x ) = k = 0 ( - 1 ) k ( 2 k + 1 ) x
Doc 15
0.3036, 0.5231
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Clausen_function.html
S ν ( x ) = k = 0 sin ( ( 2 k + 1 ) π x ) ( 2 k + 1 ) ν
Doc 16
0.2993, 0.2993
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Bernoulli_polynomials.html
L = P j = 1 n 1 ( 1 + i ) j
Doc 18
0.2990, 0.2990
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Compound_interest.html
P 0 = t = 1 T C t ( 1 + r t ) t
Doc 20
0.2990, 0.2990
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Rational_pricing.html
L ( s , χ ) = n = 1 χ ( n ) n s
Doc 19
0.2990, 0.2990
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Dirichlet_character.html
L ( χ , s ) = n = 1 χ ( n ) n s
Doc 17
0.2990, 0.2990
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Generalized_Riemann_hypothesis.html
D P V = t = 0 N F V t ( 1 + r ) t
Doc 21
0.2946, 0.2946
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Discounted_cash_flow.html
L ( s , χ ) = n = 1 χ ( n ) n s .
Doc 22
0.2915, 0.5339
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_L-function.html
N P V = n = 0 N C n ( 1 + r ) n = 0
Doc 23
0.2882, 0.2882
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Portal:Infrastructure::Economic_analysis.html
ζ ( s , t ) = n = 1 H n , t ( n + 1 ) s
Doc 24
0.2870, 0.5059
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Multiple_zeta_function.html
L ( M , V , s ) = μ { M - 0 } / V sign N ( μ ) | N ( μ ) | s
Doc 26
0.2857, 0.2857
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Shimizu_L-function.html
t n = m = 0 G m n ( m + 1 ) ( m + 2 ) .
Doc 25
0.2857, 0.5251
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Gauss–Kuzmin–Wirsing_operator.html
χ ν ( z ) = k = 0 z 2 k + 1 ( 2 k + 1 ) ν .
Doc 27
0.2822, 0.2822
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Legendre_chi_function.html
P V = t = 1 n F V t ( 1 + i ) t
Doc 28
0.2802, 0.2802
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Time_value_of_money.html
n = 0 1 ( n + a )
Doc 29
0.2763, 0.2763
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Functional_determinant.html
k = 0 ( - 1 ) k ( z + k ) m + 1
Doc 30
0.2759, 0.2759
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Polygamma_function.html
n = 1 $ 100 ( 1 + I ) n ,
Doc 31
0.2750, 0.2750
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Geometric_series.html
θ ^ F ( z ) = k = 0 R F ( k ) exp ( 2 π i k z ) ,
Doc 32
0.2742, 0.4906
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Theta_function.html
e = k = 0 3 - 4 k 2 ( 2 k + 1 ) !
Doc 33
0.2710, 0.5110
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/List_of_representations_of_e.html
Φ ( exp ( 2 π i λ ) , s , α ) = L ( λ , α , s ) .
Doc 1
0.9549, 1.9429
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
Z = n = 0 ( ( 2 n ) ! ) 3 ( 42 n + 5 ) ( n ! ) 6 16 3 n + 1
Doc 34
0.2647, 0.6957
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
P m ( Δ , x ) = exp ( 2 π i m x ) sin ( π m Δ ) π m .
Doc 35
0.2612, 0.2612
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Crenel_function.html
Z ( P , Q , s ) = n = 1 f n ( P ) f n ( Q ) λ n s
Doc 36
0.2602, 0.2602
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Minakshisundaram–Pleijel_zeta_function.html
P V = k = 1 C ( 1 + i ) k = C i , i > 0 ,
Doc 37
0.2576, 0.2576
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Present_value.html
L ( s , Δ ) = n = 1 a n n s
Doc 38
0.2567, 0.2567
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Selberg_class.html
q = exp ( 2 π i / N )
Doc 39
0.2561, 0.2561
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Volume_conjecture.html
Z ( λ , ν ) = j = 0 λ j ( j ! ) ν .
Doc 40
0.2537, 0.2537
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Conway–Maxwell–Poisson_distribution.html
1 ( x ; q ) = n = 0 x n ( q ; q ) n
Doc 41
0.2525, 0.4639
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Q-Pochhammer_symbol.html
z = exp ( 2 π i / 3 ) .
Doc 44
0.2500, 0.2500
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Butson-type_Hadamard_matrix.html
L ( E , s ) = n = 1 a n n s .
Doc 43
0.2500, 0.2500
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Modularity_theorem.html
L ( s , E ) = n = 1 a n n s .
Doc 42
0.2500, 0.2500
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Modular_elliptic_curve.html
S = p P exp ( 2 π i f ( p ) ) .
Doc 45
0.2500, 0.2500
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Ivan_Matveyevich_Vinogradov.html
g ( x ) = n = 1 f ( n ) exp ( 2 π i n x )
Doc 47
0.2489, 0.2489
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Multiplication_theorem.html
sinh x = n = 0 x 2 n + 1 ( 2 n + 1 ) !
Doc 46
0.2489, 0.4600
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Hyperbolic_angle.html
blanc ( x ) = n = 0 s ( 2 n x ) 2 n ,
Doc 48
0.2488, 0.2488
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Blancmange_curve.html
π 2 sin 2 π z = n = - 1 ( z - n ) 2 .
Doc 50
0.2488, 0.2488
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Sine.html
1 Q = i = 1 r S i ( x - λ i ) ν i
Doc 49
0.2488, 0.2488
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Chinese_remainder_theorem.html
f ( x ) = n = 0 s ( 2 n x ) 2 n
Doc 51
0.2451, 0.4737
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Draft:List_of_shape_topics_in_various_fields.html
n = 1 k χ ( n ) exp ( 2 π i n / k ) .
Doc 22
0.2915, 0.5339
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Dirichlet_L-function.html
n = 0 2 n + 3 ( n + 1 ) ( n + 2 )
Doc 52
0.2418, 0.2418
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Telescoping_series.html
ϑ 00 ( z , q ) = n = - q n 2 exp ( 2 π i n z )
Doc 53
0.2417, 0.4765
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Jacobi_theta_functions_(notational_variations).html
f ( α ) = x = 1 N exp ( 2 π i P ( x ) α ) ,
Doc 54
0.2414, 0.2414
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Hua's_lemma.html
e = k = 0 ( 3 k ) 2 + 1 ( 3 k ) !
Doc 33
0.2710, 0.5110
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/List_of_representations_of_e.html
[ G f ] ( x ) = n = 1 1 ( x + n ) 2 f ( 1 x + n ) .
Doc 25
0.2857, 0.5251
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Gauss–Kuzmin–Wirsing_operator.html
ϑ 0 , 0 ( x ) = n = - q n 2 exp ( 2 π i n x / a )
Doc 53
0.2417, 0.4765
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Jacobi_theta_functions_(notational_variations).html
ω ( z ) = n = 0 + q n ( ω a ) ( 1 + ω a ) 2 n - 1 ( z - a ) n n !
Doc 55
0.2342, 0.2342
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Wright_Omega_function.html
n = 1 H n 2 ( n + 1 ) 2 = 11 360 π 4 ;
Doc 56
0.2340, 0.2340
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Harmonic_number.html
G ( a , 0 , c ) = n = 0 c - 1 ( n c ) e 2 π i a n / c .
Doc 57
0.2327, 0.2327
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Quadratic_Gauss_sum.html
φ ( x ) = i s i ( x - i ) k
Doc 58
0.2323, 0.2323
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Refinable_function.html
n = 0 ( - 1 ) n ( n + 1 ) ( n + 2 ) = 2 ln 2 - 1.
Doc 59
0.2319, 0.4494
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Natural_logarithm_of_2.html
P = t = 1 N D 0 ( 1 + g ) t ( 1 + r ) t + P N ( 1 + r ) N
Doc 60
0.2319, 0.2319
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Dividend_discount_model.html
H V [ i , n ] = k = 0 n - i d i v ( i + k ) ( 1 + r ) n - i - k
Doc 61
0.2310, 0.2310
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Holding_value.html
Φ ( z , s , a ) = z n Φ ( z , s , a + n ) + k = 0 n - 1 z k ( k + a ) s
Doc 1
0.9549, 1.9429
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lerch_zeta_function.html
λ = 0 ρ ( t ) ( t + 1 ) 2 d t
Doc 62
0.2304, 0.2304
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000010/Articles/Golomb–Dickman_constant.html
P Q = j = 1 r A j ( x - λ j ) ν j
Doc 63
0.2289, 0.2289
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Partial_fraction_decomposition.html
f ( x ) = k = 1 sin ( 2 k x ) 2 k
Doc 51
0.2451, 0.4737
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Draft:List_of_shape_topics_in_various_fields.html
Doc 64
0.2286, 0.2286
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/List_of_fractals_by_Hausdorff_dimension.html
1 sin 2 ( z ) = n 1 ( z - n π ) 2
Doc 65
0.2268, 0.2268
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Mittag-Leffler's_theorem.html
k = 0 1 ( 2 k + 1 ) 2 = π 2 2 3 = π 2 8
Doc 66
0.2264, 0.4431
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Partial_fractions_in_complex_analysis.html
M ( a , b , z ) = n = 0 a ( n ) z n b ( n ) n ! = F 1 1 ( a ; b ; z ) ,
Doc 67
0.2215, 0.2215
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Confluent_hypergeometric_function.html
1 2 = k = 0 ( - 1 ) k ( π 4 ) 2 k ( 2 k ) ! .
Doc 68
0.2213, 0.2213
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Square_root_of_2.html
0 2 arctan ( t x ) e 2 π t - 1 d t = n = 1 c n ( x + 1 ) n ¯
Doc 69
0.2199, 0.2199
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Stirling's_approximation.html
Cl 2 m ( q π p ) = k = 1 sin ( k q π / p ) k 2 m
Doc 15
0.3036, 0.5231
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Clausen_function.html
sinc ( x ) = sin ( x ) x = n = 0 ( - x 2 ) n ( 2 n + 1 ) !
Doc 70
0.2192, 0.2192
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Sinc_function.html
n = 1 H ¯ n ( b ) ( n + 1 ) a = ζ ( a , b ¯ )
Doc 24
0.2870, 0.5059
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Multiple_zeta_function.html
ζ ( 3 ) = 8 7 k = 0 1 ( 2 k + 1 ) 3
Doc 71
0.2183, 0.2183
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Apéry's_constant.html
cos ( φ ) = n = 0 ( - φ 2 ) n ( 2 n ) ! ,
Doc 72
0.2182, 0.2182
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Sine-Gordon_equation.html
n = 1 ( - 1 ) n + 1 n = n = 0 1 ( 2 n + 1 ) ( 2 n + 2 ) = ln 2.
Doc 59
0.2319, 0.4494
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Natural_logarithm_of_2.html
f ( x ) = i = 0 x 2 i
Doc 73
0.2171, 0.2171
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Closed-form_expression.html
k = 0 1 ( 2 k + 1 ) 4 = 1 3 π 4 2 5 = π 4 96 .
Doc 66
0.2264, 0.4431
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Partial_fractions_in_complex_analysis.html
x l ( 1 - x ) l + 1 = p = 0 ( p l ) x p .
Doc 74
0.2165, 0.4286
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Binomial_coefficient.html
θ F ( z ) = m Z n exp ( 2 π i z F ( m ) )
Doc 32
0.2742, 0.4906
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Theta_function.html
λ n = m ( 1 + n 2 ) k - 1 2 ( 1 + m 2 + n 2 ) k .
Doc 75
0.2164, 0.2164
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/Sobolev_spaces_for_planar_domains.html
r = i = 0 a i 10 i
Doc 76
0.2156, 0.2156
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Decimal_representation.html
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 21460 n + 1123 ) ( n ! ) 4 4 4 n 882 2 n
Doc 34
0.2647, 0.6957
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
Z = n = 0 ( - 1 ) n ( 4 n ) ! ( 260 n + 23 ) ( n ! ) 4 4 4 n 18 2 n
Doc 34
0.2647, 0.6957
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/List_of_formulae_involving_π.html
k = 0 ( - 1 ) k z 2 k + 1 ( 2 k + 1 ) ! = sin z
Doc 77
0.2146, 0.4274
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/List_of_mathematical_series.html
k = 0 z 2 k + 1 ( 2 k + 1 ) ! = sinh z
Doc 77
0.2146, 0.4274
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/List_of_mathematical_series.html
1 ( 1 - z ) α + 1 = n = 0 ( n + α n ) z n
Doc 74
0.2165, 0.4286
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Binomial_coefficient.html
f ( i 1 , , i n ) = k = 0 n i k f ( e k ) I p
Doc 79
0.2119, 0.2119
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Invariant_basis_number.html
1 ( 1 - 2 x t + t 2 ) α = n = 0 C n ( α ) ( x ) t n .
Doc 78
0.2119, 0.2119
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Gegenbauer_polynomials.html
( a x ; q ) ( x ; q ) = n = 0 ( a ; q ) n ( q ; q ) n x n .
Doc 41
0.2525, 0.4639
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Q-Pochhammer_symbol.html
τ = i = 0 t i 2 i + 1
Doc 80
0.2111, 0.2111
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/List_of_OEIS_sequences.html
cosh x = n = 0 x 2 n ( 2 n ) !
Doc 46
0.2489, 0.4600
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Hyperbolic_angle.html
D q ( f ( x ) ) = k = 0 ( q - 1 ) k ( k + 1 ) ! x k f ( k + 1 ) ( x ) .
Doc 81
0.2098, 0.2098
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Q-derivative.html