Returned 92 matches (100 formulae, 79 docs)
    Lookup 5.000 ms, Re-ranking 442.511 ms
    Found 36561 tuple postings, 24343 formulae, 7367 documents
[ formulas ] [ documents ] [ documents-by-formula ]

Doc 1
1.0000
0.0000
25.0000
1.0000
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Strong_antichain.html
x , y A [ x y ¬ z X [ z x z y ] ] .

Doc 2
0.3793
-13.0000
8.0000
0.3793
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Syntactic_monoid.html
u S v x , y M ( x u y S x v y S ) .

Doc 3
0.3052
-6.0000
7.0000
0.3052
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Normed_algebra.html
x , y A x y x y

Doc 4
0.2807
-11.0000
6.0000
0.2807
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/C-minimal_theory.html
x y [ x y z y C ( x ; y z ) ] .

Doc 5
0.2524
-6.0000
6.0000
0.6586
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Pseudo-order.html
x , y : ¬ ( x < y y < x )
x , y : ¬ ( x < y y < x ) x = y
x , y , z : x < y ( x < z z < y )
Doc 6
0.2524
-12.0000
5.0000
0.2524
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/General_frame.html
A = { x F ; y F ( x R y y A ) }

Doc 7
0.2389
-9.0000
5.0000
0.2389
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Method_of_analytic_tableaux.html
x , y . P ( x , y ) Q ( f ( x ) )

Doc 8
0.2230
0.0000
6.0000
0.6691
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Glossary_of_Lie_algebras.html
x , y A
κ ( x , y ) := Tr ( ad x ad y ) x , y 𝔤
ϕ ( [ x , y ] ) = [ ϕ ( x ) , ϕ ( y ) ] x , y 𝔤 1 .
Doc 9
0.2230
0.0000
5.0000
1.9831
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Peano_axioms.html
x , y N
x , y N
x , y N
x , y N x < y z N x + z = y
x , y , z N
x , y , z N
x , y , z N
x , y , z N
x , y , z N
x , y , z N

Doc 10
0.2230
0.0000
5.0000
0.4049
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Symmetry_of_diatomic_molecules.html
x , y G
( x * y ) * z = x * ( y * z ) x , y , z G

Doc 11
0.2230
0.0000
5.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Clebsch–Gordan_coefficients_for_SU(3).html
x , y G

Doc 12
0.2230
-1.0000
5.0000
0.4461
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Alternatization.html
x , y S ,
x , y V ,

Doc 13
0.2230
-4.0000
5.0000
0.8922
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Universal_hashing.html
x , y U , x y
x , y U , x y
x , y U , x y
x , y U , x y : Pr h H [ h ( x ) = h ( y ) ] 1 m

Doc 14
0.2230
-6.0000
5.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Banach_space.html
x , y H : y , x

Doc 15
0.2230
-6.0000
5.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Ideal_(ring_theory).html
x , y I : x - y I

Doc 16
0.2230
-9.0000
6.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Banach_algebra.html
x , y A : x y x y

Doc 17
0.2230
-10.0000
5.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Triangle_inequality.html
x + y x + y x , y V

Doc 18
0.2230
-12.0000
5.0000
0.5999
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Well-quasi-ordering.html
x , y X , x y x S y S
i , x , y X , x y x S i y S i
x y x y y x
Doc 19
0.2230
-13.0000
6.0000
0.4461
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Bijection,_injection_and_surjection.html
x , y A , f ( x ) = f ( y ) x = y .
x , y A , x y f ( x ) f ( y ) .

Doc 20
0.2230
-13.0000
5.0000
0.6279
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Heyting_algebra.html
x , y H : ¬ ( x y ) = ¬ x ¬ y .
x , y H : ¬ ( x y ) = ¬ ¬ ( ¬ x ¬ y ) .
¬ ( ¬ x ¬ y ) = x y for all regular x , y H ,
Doc 21
0.2230
-15.0000
6.0000
0.2230
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Subadditivity.html
x , y A , f ( x + y ) f ( x ) + f ( y ) .

Doc 22
0.2230
-18.0000
5.0000
0.5867
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Reproducing_kernel_Hilbert_space.html
K ( x , y ) 2 K ( x , x ) K ( y , y ) x , y X .
x , y X
x , y X
Doc 23
0.2192
-10.0000
7.0000
0.8140
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Implementation_of_mathematics_in_set_theory.html
x , y , z ( x F y x F z y = z )
x , y , z ( x R y y R z x R z )
x , y ( x R y y R x )
{ ( x , y ) x y x y }
x y = def . { z : z x z y }

Doc 24
0.2192
-22.0000
4.0000
0.3368
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Ackermann_set_theory.html
x V y ( y x ) y ( y x ¬ z ( z y z x ) ) .
x y ( z ( z x z y ) x = y ) .

Doc 25
0.2090
-19.0000
5.0000
0.2090
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Demonic_composition.html
{ ( x , z ) | x ( S R ) z y Y ( x R y y S z ) } .

Doc 26
0.1967
-19.0000
3.0000
0.3785
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Alexandrov_topology.html
τ = { G X : x , y X x G x y y G , }
{ S X : x , y X x S y x y S , }

Doc 27
0.1818
0.0000
5.0000
0.3636
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Near_sets.html
x , y A
x , y X

Doc 28
0.1818
0.0000
5.0000
0.2914
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Skew_lattice.html
x , y A
x z = y z

Doc 29
0.1818
0.0000
5.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Quasinorm.html
x , y A

Doc 30
0.1818
0.0000
5.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Differential_algebra.html
x , y A

Doc 31
0.1818
0.0000
4.0000
0.3636
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000010/Articles/CAT(k)_space.html
x , y X
x , y X

Doc 32
0.1818
0.0000
4.0000
0.3636
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/Partially_ordered_space.html
x , y X
x , y X

Doc 33
0.1818
0.0000
4.0000
0.3357
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Prewellordering.html
x , y X
x y x y y x

Doc 34
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Bose–Mesner_algebra.html
x , y X

Doc 35
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Uniformly_smooth_space.html
x , y X

Doc 36
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Bitopological_space.html
x , y X

Doc 37
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Equivalence_of_metrics.html
x , y X

Doc 38
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Utility.html
x , y X

Doc 39
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Heap_(mathematics).html
x , y X

Doc 40
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Quotient_space_(topology).html
x , y X

Doc 41
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Maximal_element.html
x , y X

Doc 42
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Metric_map.html
x , y X

Doc 43
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Nakamura_number.html
x , y X

Doc 44
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Boehmians.html
x , y X

Doc 45
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Infrastructure_(number_theory).html
x , y X

Doc 46
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Discrete_space.html
x , y X

Doc 47
0.1818
0.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Locally_connected_space.html
x , y X

Doc 48
0.1818
-1.0000
5.0000
0.5455
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Total_order.html
x , y A 1
x , y A 2
x , y A 1 A 2
Doc 49
0.1818
-1.0000
5.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/ACE_Encrypt.html
x , y A

Doc 50
0.1818
-2.0000
4.0000
0.4813
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Program_synthesis.html
x x y x
x x y x
x y y y
Doc 51
0.1818
-4.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Tarski's_theorem_about_choice.html
x , y B , x y

Doc 52
0.1818
-7.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Graph_algebra.html
x , y V , ( x , y ) E

Doc 53
0.1818
-8.0000
5.0000
0.5455
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Arithmetic_combinatorics.html
A A := { x y : x , y A }
A + A := { x + y : x , y A } ,
A - A := { x - y : x , y A } ,
Doc 54
0.1818
-12.0000
5.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/ST_type_theory.html
x , y [ x y [ x R y y R x ] ]

Doc 55
0.1818
-12.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Johnson_bound.html
d = min x , y C , x y d ( x , y )

Doc 56
0.1818
-12.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Plotkin_bound.html
d = min x , y C , x y d ( x , y )

Doc 57
0.1818
-13.0000
4.0000
0.1818
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Singleton_bound.html
d = min { x , y C : x y } d ( x , y )

Doc 58
0.1798
-10.0000
5.0000
0.1798
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Axiom_schema_of_predicative_separation.html
x y z ( z y z x ϕ ( z ) )

Doc 59
0.1728
-8.0000
6.0000
0.9767
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Zermelo–Fraenkel_set_theory.html
x y z ( x z y z ) .
x [ a ( a x ) y ( y x ¬ z ( z y z x ) ) ] .
z w 1 w 2 w n y x [ x y ( x z ϕ ) ] .
x y z [ z x z y ] .
z [ z x z y ] w [ x w y w ] .
x y [ z ( z x z y ) x = y ] .
x y [ z ( z x z y ) w ( x w y w ) ] ,

Doc 60
0.1728
-8.0000
4.0000
0.4250
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Mereology.html
P x y z [ O z x O z y ] .
¬ P x y z [ P z x and ¬ O z y and ¬ v [ P P v z ] ] .
P P x y z [ P z y and ¬ O z x ] .
Doc 61
0.1644
-9.0000
5.0000
0.1644
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Lambda_calculus_definition.html
x z M [ x := y ] [ z ] = M [ z ]

Doc 62
0.1644
-13.0000
1.0000
0.1644
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Sahlqvist_formula.html
x y z [ ( R x y R y z ) R x z ]

Doc 63
0.1644
-20.0000
1.0000
0.2740
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Ancestral_relation.html
𝟏𝟏𝟓 : I ( R ) x y z [ ( x R y x R z ) y = z ]
x y ( F x x R y F y )

Doc 64
0.1538
-4.0000
5.0000
0.1538
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Valuation_ring.html
x A [ x ] = A [ x ] .

Doc 65
0.1538
-15.0000
5.0000
0.1538
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Apartness_relation.html
x , y : A . f ( x ) # B f ( y ) \Rarr x # A y

Doc 66
0.1538
-15.0000
2.0000
0.3952
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/General_set_theory.html
z y x [ x y ( x z ϕ ( x ) ) ] .
x y \exist w z [ z w ( z x z = y ) ] .
x y [ z [ z x z y ] x = y ] .
Doc 67
0.1404
-9.0000
4.0000
0.1404
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Max-flow_min-cut_theorem.html
( x , y ) , x A , y A c

Doc 68
0.1237
-3.0000
4.0000
0.1237
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Boolean_algebra.html
x y = ¬ ( x y )

Doc 69
0.1237
-7.0000
5.0000
0.1237
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Skew-symmetric_matrix.html
x + y , A ( x + y ) = 0

Doc 70
0.1237
-13.0000
3.0000
0.1237
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Dense_order.html
x y x R y ( z x R z z R y ) .

Doc 71
0.1237
-15.0000
3.0000
0.1237
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Axiom_of_adjunction.html
x y w z [ z w ( z x z = y ) ] .

Doc 72
0.1176
-4.0000
3.0000
0.1176
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Fermat's_Last_Theorem.html
x / z , y / z

Doc 73
0.1176
-6.0000
4.0000
0.4706
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Whitehead's_point-free_geometry.html
z [ x z and y z ] .
( x z and z y ) x y .
x < y z [ x < z < y ] .
z [ z < x z < y ] x y .

Doc 74
0.1176
-9.0000
3.0000
0.1176
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Single_crossing_condition.html
x , x y F ( x ) G ( y )

Doc 75
0.1096
-3.0000
4.0000
0.1096
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000010/Articles/T-norm_fuzzy_logics.html
x * z y * z

Doc 76
0.1096
-3.0000
4.0000
0.1096
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Partially_ordered_ring.html
x + z y + z

Doc 77
0.1096
-6.0000
2.0000
0.1096
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Quasi-set_theory.html
z ( z x z y )

Doc 78
0.1096
-10.0000
3.0000
0.2079
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/Let_expression.html
let x : x = y in z = z [ x := y ]
x = y and ( L z ) [ x := y ]

Doc 79
0.1096
-15.0000
2.0000
0.2192
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/First-order_logic.html
x y [ z ( z x z y ) x = y ]
x y [ z ( z x z y ) z ( x z y z ) ]