Returned 84 matches (100 formulae, 52 docs)
    Lookup 4.976 ms, Re-ranking 0.319 ms
    Found 42764 tuple postings, 31889 formulae, 9035 documents
[ formulas ] [ documents ] [ documents-by-formula ]

cos α = - cos β cos γ + sin β sin γ cosh a k ,
Doc 1
1.0000, 1.0000
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Hyperbolic_law_of_cosines.html
cos C = - cos A cos B + sin A sin B cosh c ,
Doc 2
0.3333, 0.3333
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Hyperbolic_triangle.html
cos A = - cos B cos C + sin B sin C cos a ,
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos A = - cos B cos C + sin B sin C cosh a .
Doc 4
0.2667, 0.5624
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Law_of_cosines.html
cos B = - cos C cos A + sin C sin A cos b ,
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos C = - cos A cos B + sin A sin B cos c .
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos ( A ) = - cos ( B ) cos ( C ) + sin ( B ) sin ( C ) cos ( a )
Doc 5
0.1806, 0.2528
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Spherical_law_of_cosines.html
cos ( α - β ) = cos α cos β + sin α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
a = arccos ( cos α + cos β cos γ sin β sin γ )
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
a = arccos ( cos α + cos β cos γ sin β sin γ ) ,
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
sin α sin β cos β cos γ + sin α cos 2 β sin γ + cos α sin 2 β cos γ + cos α sin β cos β sin γ
Doc 8
0.1300, 0.2734
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Ptolemy's_theorem.html
cos a = cos b cos c + sin b sin c cos A ,
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos b = cos c cos a + sin c sin a cos B ,
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos c = cos a cos b + sin a sin b cos C ,
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos ( α - β ) = cos α cos - β - sin α sin - β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
sin δ = sin β cos ε + cos β sin ε sin λ
Doc 9
0.1162, 0.1738
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Celestial_coordinate_system.html
cos ( α + β ) = cos α cos β - sin α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
Doc 10
0.1156, 0.4325
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/List_of_trigonometric_identities.html
Doc 11
0.1156, 0.1956
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Machin-like_formula.html
cos ( α ± β ) = cos α cos β sin α sin β
Doc 10
0.1156, 0.4325
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/List_of_trigonometric_identities.html
cos c = cos a cos b + sin a sin b cos γ .
Doc 12
0.1098, 0.1098
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Differential_geometry_of_surfaces.html
a b c 1 - cos 2 α - cos 2 β - cos 2 γ + 2 cos α cos β cos γ
Doc 13
0.1071, 0.1071
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Bravais_lattice.html
sin α s = cos h cos δ cos φ + sin δ sin φ
Doc 14
0.1070, 0.1070
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Solar_zenith_angle.html
sin ( α - β ) = sin α cos - β + cos α sin - β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
𝐱 ^ 2 = [ - cos β sin γ 2 , cos γ 2 , sin β sin γ 2 ]
Doc 15
0.1032, 0.3694
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Universal_joint.html
e i ( α + β ) = ( cos α cos β - sin α sin β ) + i ( sin α cos β + sin β cos α )
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
y ( u , v ) = - cos θ sinh v cos u + sin θ cosh v sin u
Doc 16
0.1020, 0.1020
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Catenoid.html
c = arccos ( cos a cos b + sin a sin b cos γ )
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
cos a = cos b cos c + sin b sin c cos α
Doc 17
0.0996, 0.1584
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Prosthaphaeresis.html
cos ( x - y ) = cos x cos y + sin x sin y
Doc 18
0.0978, 0.2666
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Trigonometric_functions.html
cos ( x - y ) = cos x cos y + sin x sin y .
Doc 18
0.0978, 0.2666
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Trigonometric_functions.html
γ α θ cos α + γ θ β cos β + γ α β = 0
Doc 19
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Wetting.html
Doc 20
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Ideal_surface.html
cos a = ( cos a cos c + sin a sin c cos B ) cos c + sin b sin c cos A
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
cos 2 α + cos 2 β + cos 2 γ + 2 cos ( α ) cos ( β ) cos ( γ ) = 1 ,
Doc 21
0.0907, 0.1813
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Triangle.html
r R = 4 T 2 s a b c = cos α + cos β + cos γ - 1 ;
Doc 21
0.0907, 0.1813
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Triangle.html
cos ( θ - θ ) = cos θ cos θ + sin θ sin θ
Doc 22
0.0898, 0.0898
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Spherical_harmonics.html
cos θ 1 cos θ 2 + sin θ 1 sin θ 2 = 0
Doc 23
0.0881, 0.0881
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Orthonormality.html
cos a = cos b cos c + sin b sin c cos A .
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
γ = arccos ( sin α sin β cos c - cos α cos β ) ,
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
cos ( A + B ) = cos ( A ) cos ( B ) + sin ( A ) sin ( B )
Doc 24
0.0849, 0.2780
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Plus-minus_sign.html
cos ( A - B ) = cos ( A ) cos ( B ) + sin ( A ) sin ( B )
Doc 24
0.0849, 0.2780
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Plus-minus_sign.html
cos ( θ - α ) = cos ( θ ) cos ( α ) + sin ( θ ) sin ( α )
Doc 25
0.0849, 0.0849
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Rifleman's_rule.html
sin ( α + β ) sin ( β + γ ) = sin α sin γ + sin β sin ( α + β + γ )
Doc 8
0.1300, 0.2734
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Ptolemy's_theorem.html
cos ( c R ) = cos ( a R ) cos ( b R ) + sin ( a R ) sin ( b R ) cos γ .
Doc 26
0.0804, 0.1505
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Pythagorean_theorem.html
sin ( α + β ) = sin α cos β + cos α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
Doc 10
0.1156, 0.4325
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/List_of_trigonometric_identities.html
Doc 11
0.1156, 0.1956
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Machin-like_formula.html
sin ( α + β ) = sin α cos β + sin β cos α
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
sin ( α + γ ) = sin α cos γ + sin γ cos α
Doc 4
0.2667, 0.5624
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Law_of_cosines.html
ω 2 = ω 1 cos β 1 - sin 2 β cos 2 γ 1
Doc 15
0.1032, 0.3694
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Universal_joint.html
cos 2 γ + sin 2 γ = 1.
Doc 4
0.2667, 0.5624
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Law_of_cosines.html
V = a b c 6 1 + 2 cos α cos β cos γ - cos 2 α - cos 2 β - cos 2 γ ,
Doc 27
0.0793, 0.0793
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Tetrahedron.html
( ω x ω y ω z ) = ( - sin β cos γ sin γ 0 sin β sin γ cos γ 0 cos β 0 1 ) ( α ˙ β ˙ γ ˙ ) .
Doc 28
0.0765, 0.0765
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Rigid_rotor.html
cos ( x + y ) = cos x cos y - sin x sin y ,
Doc 18
0.0978, 0.2666
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Trigonometric_functions.html
cos ( c ) = cos ( a ) cos ( b ) + sin ( a ) sin ( b ) cos ( C )
Doc 29
0.0756, 0.0756
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Solar_irradiance.html
c ( sin α cos γ + sin γ cos α ) = b sin γ ,
Doc 4
0.2667, 0.5624
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Law_of_cosines.html
cos γ = cos θ cos θ + sin θ sin θ cos ( ϕ - ϕ )
Doc 30
0.0745, 0.0745
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Spherical_multipole_moments.html
tan α 1 = cos β 2 sin ω 12 cos β 1 sin β 2 - sin β 1 cos β 2 cos ω 12 ,
Doc 31
0.0743, 0.0743
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000015/Articles/Geodesics_on_an_ellipsoid.html
c = arccos ( cos γ + cos α cos β sin α sin β ) .
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
cos C = - cos A
Doc 32
0.0727, 0.0727
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Brahmagupta's_formula.html
cos ( c ) = cos ( a ) cos ( b ) + sin ( a ) sin ( b ) cos ( C ) .
Doc 5
0.1806, 0.2528
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Spherical_law_of_cosines.html
Doc 33
0.0721, 0.0721
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Haversine_formula.html
cos ( α + β ) + cos ( α - β ) = cos α cos β - sin α sin β + cos α cos β + sin α sin β = 2 cos α cos β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
cos γ = cos θ cos θ + sin θ sin θ cos ( φ - φ ) .
Doc 34
0.0714, 0.0714
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Green's_function_for_the_three-variable_Laplace_equation.html
cos ( α + β ) - cos ( α - β ) = cos α cos β - sin α sin β - cos α cos β - sin α sin β = - 2 sin α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
sin ( α - β ) = sin α cos β - cos α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
cos 2 θ + sin 2 θ = a 2 + b 2 c 2 = 1 ,
Doc 26
0.0804, 0.1505
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Pythagorean_theorem.html
cos γ = sin θ s sin θ cos ψ + cos θ s cos θ
Doc 35
0.0698, 0.0698
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Rayleigh_sky_model.html
α = 180 - β - γ
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
sin G = cos L cos D cos R - sin L sin R = - cos L cos D sin I + sin L cos I
Doc 36
0.0679, 0.0679
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Sundial.html
cot ( α + β ) = cos ( α + β ) sin ( α + β ) = cos α cos β - sin α sin β sin α cos β + cos α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
tan ( α + β ) = sin ( α + β ) cos ( α + β ) = sin α cos β + cos α sin β cos α cos β - sin α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
d α = β γ , d β = γ α , d γ = α β .
Doc 37
0.0667, 0.0667
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Riemannian_connection_on_a_surface.html
s y m b o l φ ^ 𝐫 ^ = - sin φ cos φ + cos φ sin φ = 0
Doc 38
0.0662, 0.0662
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Classical_central-force_problem.html
γ 2 = atan2 ( sin γ 1 , cos β cos γ 1 )
Doc 15
0.1032, 0.3694
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Universal_joint.html
cos Θ = cos φ cos φ + sin φ sin φ cos ( θ - θ ) .
Doc 39
0.0655, 0.0655
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Laplace's_equation.html
a 2 = a 1 cos β 1 - sin 2 β cos 2 γ 1 - ω 1 2 cos β sin 2 β sin 2 γ 1 ( 1 - sin 2 β cos 2 γ 1 ) 2
Doc 15
0.1032, 0.3694
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Universal_joint.html
cos ( x ) = - cos ( π - x )
Doc 40
0.0638, 0.0638
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Tridiagonal_matrix.html
cos ( A ± B ) = cos A cos B sin A sin B
Doc 42
0.0622, 0.0622
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Trigonometry.html
cos ( x + y ) = cos x cos y - sin x sin y
Doc 8
0.1300, 0.2734
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Ptolemy's_theorem.html
cos ( x - y ) = cos x cos y - sin x sin y
Doc 43
0.0622, 0.0622
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Clausen_function.html
sin ( α ± β ) = sin α cos β ± cos α sin β
Doc 10
0.1156, 0.4325
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/List_of_trigonometric_identities.html
Doc 41
0.0622, 0.0622
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Abū_al-Wafā'_Būzjānī.html
Doc 44
0.0622, 0.0622
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/History_of_trigonometry.html
cos c = cos a cos b - n ^ m ^ sin a sin b ,
Doc 45
0.0621, 0.0621
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Pauli_matrices.html
cos β f ( x ) - sin β f ( x ) = 0
Doc 46
0.0619, 0.0619
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Spectral_theory_of_ordinary_differential_equations.html
α - β sin ( α - β ) = sin α cos β - sin β cos α
Doc 47
0.0619, 0.0619
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Phase_detector.html
= cos 72 cos 18 - sin 72 sin 18
Doc 48
0.0615, 0.0615
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Pentagon.html
c = a cos β + b cos α .
Doc 4
0.2667, 0.5624
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Law_of_cosines.html
γ α θ + γ θ β cos θ + γ α β cos α = 0
Doc 19
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Wetting.html
Doc 20
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Ideal_surface.html
γ α θ cos θ + γ θ β + γ α β cos β = 0
Doc 19
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Wetting.html
Doc 20
0.0924, 0.2131
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Ideal_surface.html
tan ( α + β 2 ) = sin α + sin β cos α + cos β = - cos α - cos β sin α - sin β
Doc 10
0.1156, 0.4325
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/List_of_trigonometric_identities.html
e i ( θ / 2 ) ( n ^ σ ) = I 2 cos θ / 2 + i ( n ^ σ ) sin θ / 2 ,
Doc 49
0.0588, 0.0588
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Cayley–Hamilton_theorem.html
cos a - cos b = - 2 sin ( a + b 2 ) sin ( a - b 2 )
Doc 17
0.0996, 0.1584
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Prosthaphaeresis.html
cos a sin 2 c = sin a cos c sin c cos B + sin b sin c cos A
Doc 3
0.2667, 1.3535
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Spherical_trigonometry.html
b = arccos ( cos β + cos γ cos α sin γ sin α )
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
tan α = sin λ cos ε - tan β sin ε cos λ ; { cos δ sin α = cos β sin λ cos ε - sin β sin ε ; cos δ cos α = cos β cos λ .
Doc 9
0.1162, 0.1738
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Celestial_coordinate_system.html
b = arccos ( cos β + cos γ cos α sin γ sin α ) ,
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
sin ( α + β ) - sin ( α - β ) = sin α cos β + cos α sin β - sin α cos β + cos α sin β = 2 cos α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
sin γ = c b sin β .
Doc 7
0.1488, 0.7948
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Solution_of_triangles.html
tan γ 1 = cos β tan γ 2
Doc 15
0.1032, 0.3694
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Universal_joint.html
cos ( α + β ) = O B = O A - B A = O A - R Q = cos α cos β - sin α sin β
Doc 6
0.1511, 1.5509
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Proofs_of_trigonometric_identities.html
𝐀 = 𝐀 ( cos α 𝐢 ^ + cos β 𝐣 ^ + cos γ 𝐤 ^ ) ,
Doc 50
0.0542, 0.0542
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Vector_algebra_relations.html
cos c = cos a cos b - u ^ v ^ sin a sin b ,
Doc 51
0.0542, 0.0542
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Rotation_group_SO(3).html
cos ( A - B ) = cos ( A ) cos ( B ) - sin ( A ) sin ( B )
Doc 24
0.0849, 0.2780
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Plus-minus_sign.html
cos ( A ± B ) = cos ( A ) cos ( B ) sin ( A ) sin ( B )
Doc 24
0.0849, 0.2780
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Plus-minus_sign.html
cos ( x ± y ) = cos ( x ) cos ( y ) sin ( x ) sin ( y )
Doc 52
0.0541, 0.0541
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Trigonometric_tables.html