tangent
Not Supported
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ϵ
0
∂
∂
t
𝐄
⏟
Maxwell
′
s
term
Search
Returned 94 matches (100 formulae, 58 docs)
Lookup 5.111 ms, Re-ranking 776.941 ms
Found 40064 tuple postings, 23814 formulae, 7117 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
1.0000
1.0000
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/On_Physical_Lines_of_Force.html
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ϵ
0
∂
∂
t
𝐄
⏟
Maxwell
′
s
term
Doc 2
0.2089
1.2058
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Lorentz–Heaviside_units.html
∇
×
𝐁
=
μ
0
𝐉
+
1
c
2
∂
𝐄
∂
t
∇
×
𝐁
=
1
c
𝐉
+
1
c
∂
𝐄
∂
t
∇
×
𝐁
=
4
π
c
𝐉
+
1
c
∂
𝐄
∂
t
∇
×
𝐇
=
1
c
𝐉
f
+
1
c
∂
𝐃
∂
t
∇
×
𝐇
=
4
π
c
𝐉
f
+
1
c
∂
𝐃
∂
t
∇
×
𝐁
=
1
c
∂
𝐄
∂
t
+
1
c
𝐉
𝐁
=
μ
0
(
𝐇
+
𝐌
)
∇
×
𝐇
=
𝐉
f
+
∂
𝐃
∂
t
∇
×
𝐁
=
∂
𝐄
∂
t
+
𝐉
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
Doc 3
0.2089
0.6703
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Gaussian_units.html
∇
×
𝐁
=
μ
0
𝐉
+
1
c
2
∂
𝐄
∂
t
∇
×
𝐁
=
4
π
c
𝐉
+
1
c
∂
𝐄
∂
t
∇
×
𝐇
=
𝐉
f
+
∂
𝐃
∂
t
𝐁
=
μ
0
(
𝐇
+
𝐌
)
∇
×
𝐇
=
4
π
c
𝐉
f
+
1
c
∂
𝐃
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
Doc 4
0.2089
0.3050
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Laws_of_science.html
∇
×
𝐁
=
μ
0
𝐉
+
1
c
2
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐠
=
-
∂
𝐇
∂
t
Doc 5
0.2019
0.7297
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Ampère's_circuital_law.html
∇
×
𝐁
=
μ
0
𝐉
𝐁
=
μ
0
𝐇
∇
×
𝐁
/
μ
0
=
∇
×
(
𝐇
+
𝐌
)
∇
×
𝐁
/
μ
0
=
𝐉
+
ε
0
∂
𝐄
∂
t
∇
×
𝐁
/
μ
0
=
𝐉
f
+
𝐉
bound
+
ε
0
∂
𝐄
∂
t
∇
×
𝐇
=
𝐉
f
+
∂
∂
t
𝐃
.
∇
×
𝐇
=
𝐉
f
+
∂
𝐃
∂
t
∇
×
𝐁
=
1
c
(
4
π
𝐉
+
∂
𝐄
∂
t
)
.
∇
×
B
=
1
c
2
∂
E
∂
t
.
Doc 6
0.2019
0.3617
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Magnetic_potential.html
∇
×
𝐁
=
μ
0
𝐉
∇
⋅
𝐁
=
μ
0
∇
⋅
(
𝐇
+
𝐌
)
=
0
,
∂
E
∂
t
→
0
∇
×
𝐀
=
𝐁
,
Doc 7
0.2019
0.2019
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Biot–Savart_law.html
∇
×
𝐁
=
μ
0
𝐉
Doc 8
0.1818
0.6415
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Mathematical_descriptions_of_the_electromagnetic_field.html
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ε
0
∂
𝐄
∂
t
∇
⋅
𝐀
′
=
-
μ
0
ε
0
∂
φ
′
∂
t
∇
2
𝐀
′
-
μ
0
ε
0
∂
2
𝐀
′
∂
t
2
=
□
2
𝐀
′
=
-
μ
0
𝐉
∇
2
φ
′
-
μ
0
ε
0
∂
2
φ
′
∂
t
2
=
□
2
φ
′
=
-
ρ
ε
0
∇
2
λ
-
μ
0
ε
0
∂
2
λ
∂
t
2
=
-
∇
⋅
𝐀
-
μ
0
ε
0
∂
φ
∂
t
∇
2
𝐀
′
-
μ
0
ε
0
∂
2
𝐀
′
∂
t
2
=
-
μ
0
𝐉
+
μ
0
ε
0
∇
(
∂
φ
′
∂
t
)
∇
×
𝐄
=
-
∂
𝐁
∂
t
(
s
y
m
b
o
l
∇
⋅
𝐄
-
ρ
ϵ
0
)
-
c
(
s
y
m
b
o
l
∇
×
𝐁
-
μ
0
ϵ
0
∂
𝐄
∂
t
-
μ
0
𝐉
)
+
I
(
s
y
m
b
o
l
∇
×
𝐄
+
∂
𝐁
∂
t
)
+
I
c
(
s
y
m
b
o
l
∇
⋅
𝐁
)
=
0
Doc 9
0.1818
0.2299
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Maxwell_stress_tensor.html
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ϵ
0
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 10
0.1818
0.2299
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Electromagnetic_field.html
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ε
0
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 11
0.1779
0.5596
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Force-free_magnetic_field.html
∇
×
𝐁
=
μ
0
𝐣
∇
×
𝐁
=
α
𝐁
∇
×
𝐁
=
α
𝐁
∇
×
𝐁
=
α
𝐁
∇
×
𝐁
=
0
∇
×
(
α
𝐁
)
=
α
(
∇
×
𝐁
)
+
∇
α
×
𝐁
=
α
2
𝐁
+
∇
α
×
𝐁
Doc 12
0.1779
0.1779
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Toroidal_inductors_and_transformers.html
∇
×
𝐁
=
μ
0
𝐣
Doc 13
0.1759
0.4064
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Magnetic_field.html
∇
×
𝐁
=
μ
0
𝐉
+
μ
0
ε
0
∂
𝐄
∂
t
,
s
y
m
b
o
l
τ
=
𝐦
×
𝐁
=
μ
0
𝐦
×
𝐇
,
∇
×
𝐇
=
𝐉
f
+
∂
𝐃
∂
t
,
∇
×
𝐄
=
-
∂
𝐁
∂
t
,
∇
×
𝐄
=
-
∂
𝐁
∂
t
.
Doc 14
0.1623
0.5481
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Electromagnetic_radiation.html
∇
×
𝐁
=
μ
0
ϵ
0
∂
𝐄
∂
t
(
4
)
∇
2
𝐄
=
μ
0
ϵ
0
∂
2
𝐄
∂
t
2
∇
2
𝐁
=
μ
0
ϵ
0
∂
2
𝐁
∂
t
2
.
∇
×
(
-
∂
𝐁
∂
t
)
=
-
∂
∂
t
(
∇
×
𝐁
)
=
-
μ
0
ϵ
0
∂
2
𝐄
∂
t
2
(
7
)
∇
×
𝐄
=
-
∂
𝐁
∂
t
(
2
)
Doc 15
0.1544
0.1544
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Magnetic_reconnection.html
∇
×
𝐁
=
μ
𝐉
+
μ
ϵ
∂
𝐄
∂
t
.
Doc 16
0.1475
0.4424
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Pinch_(plasma_physics).html
∇
×
B
→
=
μ
0
J
→
∇
×
B
→
=
μ
0
J
→
∇
×
B
→
=
μ
0
J
→
Doc 17
0.1429
0.1874
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000016/Articles/Induction_equation.html
∇
→
×
B
→
=
μ
0
J
→
,
∇
→
×
E
→
=
-
∂
B
→
∂
t
,
Doc 18
0.1395
0.1395
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000011/Articles/Weibel_instability.html
∇
×
𝐁
𝟏
=
μ
0
𝐉
𝟏
-
i
ω
ϵ
0
μ
0
𝐄
𝟏
Doc 19
0.1273
0.1273
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Vector_Laplacian.html
∇
2
𝐄
-
μ
0
ϵ
0
∂
2
𝐄
∂
t
2
=
0.
Doc 20
0.1215
0.1215
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Gauss's_law_for_magnetism.html
∇
⋅
𝐁
=
μ
0
ρ
m
Doc 21
0.1203
0.1683
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Gravitoelectromagnetism.html
∇
×
𝐁
=
1
ϵ
0
c
2
𝐉
+
1
c
2
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 22
0.1160
0.5712
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Maxwell's_equations.html
∇
×
𝐇
=
𝐉
f
+
∂
𝐃
∂
t
∇
×
𝐁
=
μ
0
(
𝐉
+
ε
0
∂
𝐄
∂
t
)
□
𝐀
=
μ
0
𝐉
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐁
=
1
c
(
4
π
𝐉
+
∂
𝐄
∂
t
)
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
∇
×
𝐁
-
1
c
2
∂
𝐄
∂
t
=
μ
0
𝐉
□
𝐀
+
∇
(
∇
⋅
𝐀
+
1
c
2
∂
φ
∂
t
)
=
μ
0
𝐉
Doc 23
0.1111
0.1111
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/TITAN2D.html
∂
h
∂
t
⏟
Change
in mass
over time
+
∂
h
u
¯
∂
x
+
∂
h
v
¯
∂
y
⏟
Total spatial
variation of
x,y mass fluxes
=
0
Doc 24
0.1107
0.3003
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Inhomogeneous_electromagnetic_wave_equation.html
∇
×
𝐁
=
μ
0
(
𝐉
+
ε
0
∂
𝐄
∂
t
)
1
c
2
∂
2
𝐁
∂
t
2
-
∇
2
𝐁
=
μ
0
∇
×
𝐉
.
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐁
=
1
c
(
4
π
𝐉
+
∂
𝐄
∂
t
)
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
Doc 25
0.1076
0.1556
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Time_in_physics.html
∇
×
𝐁
=
μ
0
ε
0
∂
𝐄
∂
t
=
1
c
2
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 26
0.1060
0.1060
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Kepler_orbit.html
r
˙
×
H
=
μ
u
+
c
Doc 27
0.1049
0.2649
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Slowly_varying_envelope_approximation.html
∇
2
E
-
μ
0
ε
0
∂
2
E
∂
t
2
=
0.
𝐤
0
⋅
∇
E
0
+
ω
0
μ
0
ε
0
∂
E
0
∂
t
=
0.
k
0
∂
E
0
∂
z
+
ω
0
μ
0
ε
0
∂
E
0
∂
t
-
1
2
i
Δ
⟂
E
0
=
0.
Doc 28
0.0926
0.2301
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Defining_equation_(physics).html
𝐉
d
=
ϵ
0
∂
𝐄
∂
t
𝐁
=
μ
0
𝐇
,
∮
S
𝐁
⋅
d
𝐥
=
μ
0
∮
S
(
𝐉
+
ϵ
0
∂
𝐄
∂
t
)
⋅
d
𝐀
Doc 29
0.0846
0.1494
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Magnetism.html
𝐁
=
μ
0
𝐇
,
𝐁
=
μ
0
(
𝐇
+
𝐌
)
.
Doc 30
0.0825
0.2774
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Displacement_current.html
s
y
m
b
o
l
∇
×
B
=
μ
0
s
y
m
b
o
l
J
D
,
s
y
m
b
o
l
∇
×
B
=
μ
0
s
y
m
b
o
l
J
f
,
s
y
m
b
o
l
∇
×
(
s
y
m
b
o
l
∇
×
B
)
=
μ
0
ϵ
0
∂
∂
t
s
y
m
b
o
l
∇
×
E
.
s
y
m
b
o
l
J
D
=
ϵ
0
∂
s
y
m
b
o
l
E
∂
t
Doc 31
0.0782
0.2317
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Stokes'_theorem.html
∇
×
𝐇
=
1
c
∂
𝐃
∂
t
+
4
π
c
𝐉
,
∇
×
𝐇
=
𝐉
+
∂
𝐃
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
,
Doc 32
0.0768
0.0768
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Ginzburg–Landau_theory.html
∇
×
𝐁
=
μ
0
𝐣
;
𝐣
=
2
e
m
Re
{
ψ
*
(
-
i
ℏ
∇
-
2
e
𝐀
)
ψ
}
Doc 33
0.0766
0.0766
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Lorenz_gauge_condition.html
∇
×
(
E
→
+
∂
A
→
∂
t
)
=
0
Doc 34
0.0749
0.0749
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000013/Articles/Transmission-line_matrix_method.html
∂
2
H
z
∂
x
2
+
∂
2
H
z
∂
y
2
=
μ
ε
∂
2
H
z
∂
t
2
Doc 35
0.0697
0.0697
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/Poynting's_theorem.html
𝐃
=
ϵ
0
𝐄
,
𝐁
=
μ
0
𝐇
.
Doc 36
0.0687
0.2095
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Planck_units.html
∇
×
𝐁
=
4
π
𝐉
+
∂
𝐄
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐄
=
-
∂
𝐁
∂
t
∇
×
𝐁
=
1
c
2
(
1
ϵ
0
𝐉
+
∂
𝐄
∂
t
)
Doc 37
0.0660
0.0660
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Magnetic_moment.html
𝐁
=
μ
0
(
𝐇
+
𝐌
)
Doc 38
0.0660
0.0660
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Magnetization.html
𝐁
=
μ
0
(
𝐇
+
𝐌
)
Doc 39
0.0648
0.0648
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Magnetic_tension_force.html
𝐒
=
𝐄
×
𝐁
/
μ
0
Doc 40
0.0648
0.0648
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Momentum.html
𝐁
=
μ
0
(
𝐇
+
𝐌
)
.
Doc 41
0.0645
0.0645
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Gauge_fixing.html
1
c
2
∂
2
𝐀
∂
t
2
-
∇
2
𝐀
=
μ
0
𝐉
Doc 42
0.0641
0.0641
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000004/Articles/A_Dynamical_Theory_of_the_Electromagnetic_Field.html
∇
×
𝐇
=
ε
o
∂
𝐄
∂
t
Doc 43
0.0633
0.1072
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/London_equations.html
∇
×
𝐁
=
4
π
𝐣
c
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
Doc 44
0.0630
0.0630
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000006/Articles/Quasiconformal_mapping.html
∂
f
∂
z
¯
=
μ
(
z
)
∂
f
∂
z
,
Doc 45
0.0630
0.0630
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Schwarzian_derivative.html
∂
F
∂
z
¯
=
μ
(
z
)
∂
F
∂
z
,
Doc 46
0.0615
0.0615
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000007/Articles/Covariant_formulation_of_classical_electromagnetism.html
∇
×
H
=
J
free
+
∂
D
∂
t
Doc 47
0.0610
0.0610
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000003/Articles/Continuity_equation.html
∇
×
𝐇
=
𝐉
+
∂
𝐃
∂
t
.
Doc 48
0.0588
0.0588
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000012/Articles/Vector_spherical_harmonics.html
∇
×
𝐁
^
=
μ
0
𝐉
^
+
i
μ
0
ε
0
ω
𝐄
^
⇒
-
B
r
r
+
d
B
(
1
)
d
r
+
B
(
1
)
r
=
μ
0
J
+
i
ω
μ
0
ε
0
E
Doc 49
0.0500
0.0500
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000014/Articles/Mathematics_of_radio_engineering.html
∇
×
(
E
+
i
B
)
=
i
∂
∂
t
(
E
+
i
B
)
Doc 50
0.0480
0.0480
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Optical_tweezers.html
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 51
0.0480
0.0480
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Transcranial_magnetic_stimulation.html
∇
×
𝐄
=
-
∂
𝐁
∂
t
Doc 52
0.0468
0.0468
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000001/Articles/Lorentz_force.html
∇
×
𝐄
=
-
∂
𝐁
∂
t
.
Doc 53
0.0455
0.0455
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000002/Articles/Poisson's_equation.html
∇
×
𝐄
=
-
∂
𝐁
∂
t
=
0
Doc 54
0.0447
0.0447
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Moving_magnet_and_conductor_problem.html
∇
×
𝐄
′
=
-
∂
𝐁
′
∂
t
.
Doc 55
0.0438
0.0438
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Voigt_effect.html
∇
→
×
H
→
=
1
c
∂
D
→
∂
t
Doc 56
0.0438
0.0438
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000008/Articles/Theoretical_and_experimental_justification_for_the_Schrödinger_equation.html
∇
×
𝐄
=
-
1
c
∂
𝐁
∂
t
Doc 57
0.0398
0.0398
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000009/Articles/Pressure-correction_method.html
ρ
(
∂
𝐯
∂
t
⏟
Unsteady
acceleration
+
(
𝐯
⋅
∇
)
𝐯
⏟
Convective
acceleration
)
⏞
Inertia
=
-
∇
p
⏟
Pressure
gradient
+
μ
∇
2
𝐯
⏟
Viscosity
+
𝐟
⏟
Other
forces
Doc 58
0.0372
0.0666
testing/NTCIR12_MathIR_WikiCorpus_v2.1.0/MathTagArticles/wpmath0000005/Articles/Electromagnetic_tensor.html
∇
⋅
𝐁
=
0
,
∂
𝐁
∂
t
+
∇
×
𝐄
=
0
∇
⋅
𝐄
=
ρ
ϵ
0
,
∇
×
𝐁
-
1
c
2
∂
𝐄
∂
t
=
μ
0
𝐉