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What is Math Notation?



Mathematical Notation
Mathematical notation may represent:	


quantities or values (e.g. real numbers, boolean vars.)	

structures (e.g. matrices, graphs, sets)	

operations on quantities and structures (e.g. +, ∪, ¬)	

relationships (e.g. x = 2, y > 1 ) 	


History of Math Notation:  see Cajori,  “History of Mathematical 
Notations” (2 Vols.), 1929	


!

A natural visual language: adapted by authors for their own 
purposes. 	


e.g. Consider definitions for ‘f ’ or ‘x’ - dialects	
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Structure in Math Expressions

Primitives: 4 pen strokes (2,→,↓,2)

Symbols: 3 (2, +, 2) 
3

3. STRUCTURE MATRICES AND EVALUATION METRICS

We now define label graphs along with metrics for evaluating structure recognition at the primitive level. Es-
sentially, label graphs are directed graphs over primitives, which we represent using adjacency matrices. In a
label graph, nodes represent primitives, while edges define primitive segmentation (i.e. ‘merge’ relationships)
and object relationships. Figure 1(a) shows a directed graph representing symbols (objects) for a handwritten
“2+2”. Two strokes belong to the symbol “+”, and one stroke for each of the “2” symbols, giving three objects
for four input primitives. In our representation relationships are defined at the level of objects, implying that all
primitives in a symbol have the same incoming and outgoing edges.

Figures 1(b) and (c) show di↵erent representations for a handwritten “2+2” based on symbol layout and
operator syntax. Figure 1(a) represents symbol layout, showing that left-to-right we have “2” followed by a “+”
and then another “2”. Figure 1(c) represents the mathematical syntax of the expression, with “+” as a binary
operator with two arguments. Figure 1(d) shows 1(b) as a symbol layout tree and (c) as an operator tree, where
nodes represent symbols. Layout trees are roughly equivalent to LATEX and Presentation MathML, and operator
trees to Content MathML and abstract expression syntax used in programming language compilers. Both have
been used for math recognition and retrieval, and layout trees may be mapped to operator trees.7
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(d) Layout and Operator
Trees

Figure 1: “2+2” Written Using Four Strokes. (a)-(c) are primitive label graphs, and (d) shows trees over objects
(symbols) whose structure are equivalent to (b) and (c). Strokes are named in writing order as s1, s2, s3 and s4
with the vertical and horizontal strokes for the ’+’ indicated by (ver.) and (hor.). Dashed edges indicate strokes
merged into a symbol. Nodes are labeled with the class of the symbol associated with a stroke. Remaining edges
represent relationships: R for adjacent-at-right, and Arg1 and Arg2 for operator arguments

In Figure 1(b), the relationship between the rightmost “2” and the leftmost “2” is due to the “R” (adjacent-
at-right) and other spatial relationships being hierarchical in our representation. For example, for the LATEX ex-
pression 2^{x-1}, “x”, “-”, and “1” are in the superscript region of “2”, not just the “x”, and both the “-”
and “1” are adjacent to the “x”. If a system returns “2_{x}^{-1}” for this expression, the subscript with x is
incorrect, and there is a missing adjacency between “x” and “-”; but the detected superscript containing “-1” is
correct, and we capture this using this representation.8

For evaluation, we represent our labeled directed graphs over primitives using label graphs. Figure 2(a)
visualizes these as adjacency matrices of labels: the diagonal provides primitive labels and other cells provide
primitive pair (edge) labels. Figures 2(b) to 2(d) are label graphs for the graphs in Figure 1, with the label graph
format shown first. To ease comparison, we use “1” and “2” to represent “Arg1” and “Arg2” in the syntax graph.
The underscore (’ ’) identifies unlabeled primitives and relationships (e.g. ’no relationship’), and an asterisk (’*’)
represents two primitives in the same symbol.

Relative to Figure 1(a), some relationships in Figures 1(b) and (c) di↵er. The matrices di↵er where new
relationships add edges to the graph. For n primitives (e.g. strokes), there are n2 labels in a primitive structure
graph (16 labels for Figures 1(a)-(c)). For C object classes (i.e. possible primitive labels), and L relationship
types, the number of possible primitive structure graphs is CnLn(n�1). For C = 100 symbol classes and L=10
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Why Do This?
(i.e. math recognition and retrieval research)

R. Zanibbi and D. Blostein (2012) Recognition and Retrieval of Mathematical Expressions, 
Int'l. Journal on Document Analysis and Recognition 15(4): 331-357.

Survey:



I. Social Motivation

Mathematical Literacy	


Make it easier for persons of all ages and walks 
of life to create and find mathematical material.	


!

Initial Emphasis:  Non-experts and children	


!

(Zhao et al., 2008): Mathematicians/mathematical experts 
often know names for common formulas/metrics/theories, 
use these in web searches - current tools adequate?

6



AccessMath 
Project Set-up:	

Video + Mimio	


(w. Stephanie Ludi, 
Roger Gaborksi,  
Anurag Agarwal)

Goal: iPad app for 
low-vision students 

using image and 
audio queries to 

search math lectures



II. Retrieval Motivation
Structured and Image-Based Retrieval	


• Given hierarchical structure, formulae a good 
domain for graph-based retrieval research	


• Many online expressions are images - opportunity 
to study image-based retrieval in a constrained 
setting (vs. ‘natural scenes’)	


• If we improve math search, can we improve 
retrieval for other notations (e.g. chemical 
diagrams)?	


	
 Studied since early 2000’s (Miller and Youssef - DLMF)
8



III. Recognition Motivation
Math as Structural Pattern Recognition Problem	


Recognition involves central PR problems:	


• Classification (What),   Segmentation (Where),            
Parsing (How objects are structured)	


• Optimizing the interaction: Machine Learning	


	
 Inputs relatively small	


	
 Output language(s) well-constrained 	


But non-trivial - this is visual Natural Language Processing	


Studied since the late 1960’s (Anderson’s PhD (MIT))
9



min: A Multimodal Math 
Search Interface

C. Sasarak, K. Hart, R. Pospesel, D. Stalnaker, L. Hu, R. LiVolsi, S. Zhu, and R. Zanibbi. (2012) 
min: A Multimodal Web Interface for Math Search. Symp. Human-Computer Interaction and 
Information Retrieval, Cambridge, MA (online, 4pp).



Existing Search Engines 	


Designed for text; Term Frequency-Inverse Document Frequency (TF-IDF) of words 
provides basis for many retrieval systems + statistics (e.g. n-grams), word proximity, etc.	


Structure represented in string languages,  e.g. 1/2  as  \frac{1}{2}  in LaTeX	


Limitations for Math Search with Current Engines	


Many are unfamiliar with string languages used to represent symbols (e.g. greek letters) 
and structures in math	


Making structural comparisons directly on “flattened” representations introduces 
problems:	


• String-based difference measurements for what is a tree-based (i.e. hierarchical) 
structure leads to very coarse structural matching (e.g. missing sub-expressions 
between a query and candidate expression)	


Tree-based distances expensive (e.g. EMERS (Sain et. al) is O(n4) - in general, edit 
distance on unordered trees is NP-complete) 11

Existing Tools for Math Search



min search interface	

•  Mouse/touch, keyboard, and image input	

•  Keywords + LaTeX sent to chosen search engine	

•  http://saskatoon.cs.rit.edu/min code: https://github.com/DPRL 





Preliminary User Study 
for min

Del Valle Wangari, K., Zanibbi, R. and Agarwal, A. (2014) Discovering real-world use cases for a 
multimodal math search interface. Proc. ACM SIGIR, Gold Coast, Australia (to appear, July 2014).



Study Design

Questions:	


1. Does using min change search behavior for 
mathematical non-experts?	


2. Can users identify real-world scenarios for 
using a multimodal math search interface?

15
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ABSTRACT 
To use math expressions in search, current search engines require 
knowing expression names or using a structure editor or string 
encoding (e.g., LaTeX). For mathematical non-experts, this can 
lead  to  an  “intention  gap”  between  the  query  they  wish  to  express  
and what the interface will allow them to express. min is a search 
interface that supports drawing expressions on a canvas using 
mouse/touch, keyboard and images. We present a user study 
examining whether min changes search behavior for mathematical 
non-experts, and to identify real-world usage scenarios for 
multimodal math search interfaces. Participants found query-by-
expression using hand-drawn input useful, and identified 
scenarios in which they would like to use systems like min such as 
for locating, editing and sharing complex expressions (e.g., with 
many Greek letters), and working on complex math problems.   

Categories and Subject Descriptors 
H.3.3. [Information Storage and Retrieval]: Information Search 
and Retrieval – Query formulation, Search process; H.5.2. 
[Information Interfaces and Presentation]: User Interfaces – 
User-centered design. 

Keywords 
User interface design; multimodal input; search interfaces; 
Mathematical Information Retrieval; MIR; query-by-expression. 

1. INTRODUCTION 
Our study was designed to gain insight into whether expressions 
would be desirable and/or useful to non-experts (in our case, 
college students) when conducting math-related searches. We 
looked at relevant research in the areas of visual math perception 
and math input to understand the mental model and input 
preferences of math searchers and then surveyed the current state 
of math search interfaces to discover whether there are usability 
issues that might specifically impact the non-expert user. 

What we found is that current math search interfaces limit users to 
expressing the math expression portion of their search need in the 
form of text, an encoding language, or via the use of some type of 

equation editor. If users are visualizing a formally notated math 
expression before they search, it seems unfortunate to break this 
visual flow by forcing users to first convert the diagrammatic 
math expression into a coded, sentential one or build it through 
the tedious use of selection menus in order to initiate the search 
process. Further, since many math expressions are learned, 
consumed and recalled visually, being able to query using 
expressions (i.e., query-by-expression) seems a natural way for 
non-experts to search for mathematical information [12].  

In a prior study of math professors and graduate students, 
participants could not identify scenarios where entering math 
expressions as search terms would be useful [14], and found it 
sufficient to lookup formulas, metrics and concepts textually, as 
they often knew them by name. However, the study did not 
consider non-experts, and participants were not provided with a 
prototype supporting non-textual math input for evaluation. 

 
Figure 1: A query combining a handwritten expression and 
keywords in min

1
. Different search engines may be selected 

from a drop-down menu (visible at top right). 
In contrast, for our study, non-expert participants used the math 
search interface min (see Figure 1 [6]). min supports drawing 
expressions as opposed to entering them textually or using 
template editors (e.g., Microsoft Equation Editor). The goals of 
our user study were: 1) to observe whether min changes user 
search behavior, and 2) document relevant use cases for math 
search interfaces by mathematical non-experts. Changes in user 
behavior included increased use of math expressions in search, 
and an increased capacity for some participants to represent 
expressions for search, and a number of realistic use cases were 
identified. We believe that our findings can inform the design of 
math search interfaces so that they better support mathematical 
non-experts. 

2. RELATED WORK 
The appearance of math expressions affects our reasoning about 
them [6]. Landy & Goldstone ran a series of experiments where 

                                                                 
1 http://saskatoon.cs.rit.edu/min_instructions 

Permission to make digital or hard copies of all or part of this work for personal or 
classroom use is granted without fee provided that copies are not made or 
distributed for profit or commercial advantage and that copies bear this notice and 
the full citation on the first page. Copyrights for components of this work owned 
by others than the author(s) must be honored. Abstracting with credit is permitted. 
To copy otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee. Request permissions from 
Permissions@acm.org. 
 SIGIR '14, July 06 - 11 2014, Gold Coast , QLD, Australia 
Copyright is held by the owner/author(s). Publication rights licensed to ACM. 
ACM 978-1-4503-2257-7/14/07…$15.00. 
http://dx.doi.org/10.1145/2600428.2609481  



Search Tasks

16

participants were asked to judge whether given equations were 
valid. Equations were structured with either nonstandard spatial 
relationships, irrelevant or induced groupings, or manipulated 
spacing. This influenced participant responses even when given 
feedback, and when they recognized that they were likely being 
misled by their perceptions. 

In another set of experiments, participants were presented with 
equations expressed textually, and asked to either handwrite or 
type them into an interactive website using a keyboard [5]. 
Participants systematically spaced the expressions even when it 
was unnecessary. Landy & Goldstone suggest that math notation 
may be grounded in visual structure, since people seem to be 
affected by small changes in symbol layout. 

Typed input has been found not to be ideal for authoring math 
notation by many users [2]; equation editors fall short as searching 
for symbols is tedious and making changes in symbol layout can 
be difficult [11]. In an initial study, users asked to use and rate 
various input modalities for math, found handwriting to be the 
most natural and satisfactory [2]. Later, these results were found 
to generalize to middle- and high-schoolers and to simpler, easily 
typed equations [1].  
If users have a math expression in mind, it may be disruptive for 
them to convert it into code or text to initiate the search process. 
This   gap   between   a   user’s   intentions   and   a   system’s   allowable  
actions is known as the Gulf of Execution [9]. The point at which 
a user is unable to precisely express their search intent as a 
keyword  query  has  been  termed  the  “intention  gap”  [13]. We feel 
this intention gap is present in major text-based search engines 
like Google and in math search interfaces such as Wolfram Alpha, 
NIST Digital Library of Mathematical Functions, as well as in 
more recently developed math search engines like EgoMath [7] 
and WikiMirs [3], both of which enable math search for 
Wikipedia.  
EgoMath, whose interface accepts math expressions in TeX 
format, text or both adapts keyword search for math. Keywords 
have sufficient semantics for search engines to provide users with 
a relevant and sensibly ranked results list but, on their own, math 
symbols do not as they usually derive meaning from how they are 
organized structurally in a math expression [4]. WikiMirs, whose 
interface accepts LaTeX input, is designed to look for textual and 
spatial similarities   between   the   user’s   search   query   and   the  
indexed information. Both EgoMath and WikiMirs require the 
searcher to know an encoding language and demonstrate the 
sentential form of input where support for the diagrammatic 
aspects of complex math expressions is missing.  
The Math-Aware Search Engine (MASE) [8] is another recently 
developed math search engine. It is designed to support math 
question and answering (Q&A) systems and its interface allows 
users to input text and math expression queries using the equation 
editor CODECOGS as a front-end. While equation editors do lend 
support for the two-dimensional, spatial aspect of complex math 
expressions, building and modifying the expression can be 
tedious, as discussed earlier. Given the strong visual-spatial aspect 
of math notation and its impact on reasoning, and given the 
benefits of and preference for handwriting as a means of inputting 
math on a computer, it appears the current search interfaces may 
not provide the best user experience, particularly for non-experts, 
when searching for math-related information.  
min [10] is a search interface that allows users to draw expressions 
on a canvas (see Figure 1). The system is multimodal, also 
accepting keyboard and image input. Recognition of user input is 

displayed on the canvas. Tools are provided for correction and 
manipulation including symbol selection, stroke selection, 
undo/redo, and optical character recognition (OCR) correction. 
Once the user is satisfied, they may submit the expression along 
with keywords to various search engines. min converts the 
expression into LaTeX, and then combines it with the keywords 
into a query string that can then be sent to various math-aware 
search engines that support LaTeX input.   

3. METHODOLOGY 
Participants. The 16 participants were 18 or older, currently 
enrolled in a first- or second-year college math course, self-rated 
as Beginner or Intermediate level in math knowledge, and self-
rated as Comfortable or Very Comfortable using the internet. 
“Beginner”   was   defined   as having knowledge consistent with 
Basic Math and Pre-Algebra  concepts.  “Intermediate”  was  defined  
as having knowledge consistent with Geometry, Algebra and Pre-
Calculus concepts. Participants were recruited via email. Target 
recipients were current Rochester Institute of Technology (RIT) 
students in the College of Science, which contains the math 
department, and the College of Computing and Information 
Sciences. 

Environment. The study was conducted in RIT’s  Usability Lab. 
The room was equipped with a desktop PC with a webcam, and a 
speakerphone connected to the observation room. The observation 
room was equipped with a desktop PC. Background information 
and post-study ratings were collected from each participant via 
online surveys. A moderator in the test room took notes during 
each session. For 14 of the 16 sessions, an observer in the 
observation room marked session recordings with task times and 
noted interesting participant comments and actions; for the 2 
moderator-only sessions, task times were marked later. 

Tasks. The math topics and expressions used in the tasks were 
selected based on the recommendations of the third author, a math 
professor who advised that they were consistent with information 
needs that students confront in freshman or sophomore college 
math courses. Each task intentionally included both keywords and 
math expressions to allow us to observe which one participants 
preferred to use in their searches. The tasks were written in peer-
assist style, where participants imagine they are assisting a 
classmate, to reduce anxiety participants might experience by 
feeling their knowledge of math is being tested. 

Task 1: Your classmate is having difficulty recognizing 
polynomials. Find one or more resources to help explain to your 
classmate why 𝑥ଶ − 7𝑥 + 2 is a polynomial and why ௫

మି௫ାଶ
௫ାଶ  is 

not a polynomial. 
Task 2:  Your  classmate  has  heard  of  Pascal’s  triangle  but  doesn’t  
understand how it relates to math. Find one or more resources to 
help explain to your classmate how the equation (𝑥 + 𝑦)ଶ = 
𝑥ଶ + 2𝑥𝑦 +  𝑦ଶ relates  to  Pascal’s  Triangle. 

Task 3: Your classmate is struggling with binomial coefficients. 
Find one or more resources to help explain to your classmate how 
to find the value of (    42    ). 

Task 4: Your classmate is having trouble understanding the prime 
counting function. Find resources that help explain why  𝜋(2) =
1. 

Search Tool Conditions. Participants were asked to bring 
textbooks, class materials or notes from their current math class so 
math search behaviors that are tool-independent could be 

Designed four search tasks with Prof.  Agarwal who 
teaches Math at RIT, in “peer-assist” style.



Search Tool Conditions
All participants did the following, in order: 	


1. ‘Free’ - choice of textbooks, notes, 
websites and online search.	


2. Online search without min                 

(demonstration; brief set of questions about min)	


3. Online search with min	


4. Online search with min optional	


!

*Search tasks counter-balanced to avoid order effects 17



Results
• The 16 participants were 18 or older, currently enrolled in a 

first- or second-year college math course, self-rated as Beginner 
or Intermediate level in math knowledge, and self- rated as 
Comfortable or Very Comfortable using the internet. All were 
students in College of Science or College of Computing at RIT. 

• Sessions were videotaped in a quiet room. 

• No participant used LaTeX or a structure editor, though 
some knew of these.	


• 12/16 (75%) of participants could identify scenarios where 
they could use min; studying for math tests (in particular, 
working with Calculus, integrals, complex math problems and 
expressions with lots of Greek letters), taking notes, 
collaborating with remote students on assignments, and 
exporting expressions as image files or LaTeX for use in 
reports. 18



Search Task Times and Success

Self-reported success rates were nearly 
identical for min vs. non-min conditions. 19
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x improving the recognition algorithms and results visualizations used in 
min might substantially reduce the increased task times we observed 

x the typical non-expert math searcher is  not familiar with encoding 
languages, template editors and expression names 

x after hands-on use, most non-expert math searchers may find a 
multimodal math search interface useful 

x increased expression use when using min may be attributed to its 
affordance, novelty and ability to bridge the intention gap 

x search interfaces supporting handwritten entry for other diagram 
types (e.g., chemical diagrams) are worth exploring in the future 

This material is based upon work supported by the National Science foundation under Grant No. IIS-1016815. Any 
opinions, findings, and conclusions or recommendations expressed in this material are those of the author(s) and do 
not necessarily reflect the views of the National Science Foundation. 
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                                average  task  time                                                                real-world  usage 
75%  identified  scenarios  where  they  

would  use  min  or  could  have  used  min  in  the  
past,  such  as  studying  for  math  tests  or  
creating  reports  that  involve  Calculus,  
integrals,  complex  math  problems  and  
expressions  with  lots  of  Greek  letters. 

81%  agreed  or  strongly  agreed  that  

being  able  to  search  using  mathematical  
expressions  made  it  easier  to  find  what  they  
needed,  despite  the  increased  task  time. 
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                  Cond  4  –  using  min  canvas  by  choice,  n=11                  Cond  4  –  not  using  min  canvas  by  choice,  n=5  

    Cond  1  (free),  n=15                                    Cond  2  (online),  n=15                                    Cond  3  (min),  n=16 
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min  design  changes…  
to  …   x operator  shorthands  (e.g.,  ‘^’  for  exponents)  

can now be typed directly on canvas 

x text and handwritten symbols on canvas are 
now rendered using MathJax to produce a 
simpler and cleaner symbol layout 

x handwritten strokes are now hidden after 
recognition to reduce visual clutter  



Results, Continued
Despite the longer entry/search times,  11/16 
participants (69%) reported that min made it 
easy to enter expressions.	


  “Like 4 choose 2 – that’s really hard to ‘write’ but it knew what  
  I meant and it accurately translated what I was trying to say to it.”	

!

Search behavior: condition 2 (online search) - no 
expressions entered; condition 3 (min) expressions used 
by all participants, and 10/11 in condition 4 using min.	


From videos, long tasks times with min largely from 
recognizer errors, and participant errors interpreting 
recognition results. (recognition feedback modified)	
 20



Study Conclusions

Questions:	


1. Does using min change search behavior for 
mathematical non-experts?	


Use of expressions in queries was increased.	


2. Can users identify real-world scenarios for using a 
multimodal math search interface?	


Yes (studying; writing; course work; collaboration) 21
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ABSTRACT 
To use math expressions in search, current search engines require 
knowing expression names or using a structure editor or string 
encoding (e.g., LaTeX). For mathematical non-experts, this can 
lead  to  an  “intention  gap”  between  the  query  they  wish  to  express  
and what the interface will allow them to express. min is a search 
interface that supports drawing expressions on a canvas using 
mouse/touch, keyboard and images. We present a user study 
examining whether min changes search behavior for mathematical 
non-experts, and to identify real-world usage scenarios for 
multimodal math search interfaces. Participants found query-by-
expression using hand-drawn input useful, and identified 
scenarios in which they would like to use systems like min such as 
for locating, editing and sharing complex expressions (e.g., with 
many Greek letters), and working on complex math problems.   

Categories and Subject Descriptors 
H.3.3. [Information Storage and Retrieval]: Information Search 
and Retrieval – Query formulation, Search process; H.5.2. 
[Information Interfaces and Presentation]: User Interfaces – 
User-centered design. 

Keywords 
User interface design; multimodal input; search interfaces; 
Mathematical Information Retrieval; MIR; query-by-expression. 

1. INTRODUCTION 
Our study was designed to gain insight into whether expressions 
would be desirable and/or useful to non-experts (in our case, 
college students) when conducting math-related searches. We 
looked at relevant research in the areas of visual math perception 
and math input to understand the mental model and input 
preferences of math searchers and then surveyed the current state 
of math search interfaces to discover whether there are usability 
issues that might specifically impact the non-expert user. 

What we found is that current math search interfaces limit users to 
expressing the math expression portion of their search need in the 
form of text, an encoding language, or via the use of some type of 

equation editor. If users are visualizing a formally notated math 
expression before they search, it seems unfortunate to break this 
visual flow by forcing users to first convert the diagrammatic 
math expression into a coded, sentential one or build it through 
the tedious use of selection menus in order to initiate the search 
process. Further, since many math expressions are learned, 
consumed and recalled visually, being able to query using 
expressions (i.e., query-by-expression) seems a natural way for 
non-experts to search for mathematical information [12].  

In a prior study of math professors and graduate students, 
participants could not identify scenarios where entering math 
expressions as search terms would be useful [14], and found it 
sufficient to lookup formulas, metrics and concepts textually, as 
they often knew them by name. However, the study did not 
consider non-experts, and participants were not provided with a 
prototype supporting non-textual math input for evaluation. 

 
Figure 1: A query combining a handwritten expression and 
keywords in min

1
. Different search engines may be selected 

from a drop-down menu (visible at top right). 
In contrast, for our study, non-expert participants used the math 
search interface min (see Figure 1 [6]). min supports drawing 
expressions as opposed to entering them textually or using 
template editors (e.g., Microsoft Equation Editor). The goals of 
our user study were: 1) to observe whether min changes user 
search behavior, and 2) document relevant use cases for math 
search interfaces by mathematical non-experts. Changes in user 
behavior included increased use of math expressions in search, 
and an increased capacity for some participants to represent 
expressions for search, and a number of realistic use cases were 
identified. We believe that our findings can inform the design of 
math search interfaces so that they better support mathematical 
non-experts. 

2. RELATED WORK 
The appearance of math expressions affects our reasoning about 
them [6]. Landy & Goldstone ran a series of experiments where 

                                                                 
1 http://saskatoon.cs.rit.edu/min_instructions 
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23Figure 2: Illustration of summary styles. From top to bottom:
summary style obtained from Google search (SS1, the Control
condition), and then for the same hit but with the math expres-
sions rendered (SS2, the Rendered condition).

shown by Cutrell and Guan [7]. Presenting hits one-at-a-time also
forces participants to consider the contents of each search hit. The
presentation order was counterbalanced across participants to avoid
ordering effects. Using these two strategies, we hoped to obtain a
consistent measurement of perceived relevance for the search hits
across participants. A similar design was used earlier by Kickmeier
and Albert [12].

The system was run on a server with Apache, PHP and MySQL.
The client computers used by the participants had access to the
server and were running Windows 7 and the Firefox browser, and
had a standard keyboard and mouse.

2.3 Protocol
Participants were told to read the familiarization task and fol-

low the instructions on the screen. The familiarization task had the
same structure as the experimental tasks but with only four result
hits. They were verbally told to “respond as quickly as possible, but
take your time to make sure that you carefully consider whether a
search result is relevant before you click Yes or No, even if it takes
you longer than it usually does when you search, that is fine."

The experiment’s website then guided the participants through
the experimental tasks (which were counter-balanced between par-
ticipants). Participants were again asked to respond as quickly as
possible, but take their time to make sure that they carefully con-
sider whether a search result is relevant before clicking Yes or No,
both verbally and with written instructions on-screen. After the fa-
miliarization task was completed and these instructions were pro-
vided verbally, the experimenter stated that he wouldn’t be able to
answer any more questions because the tasks are timed.

Each task started with a short description of the information need
and the pre-defined query used to meet the information need and
generate the results. Participants were asked to read the tasks and,
when ready, click a Start button. At this moment the system started
measuring response times and relevance assessments. Each of the
hit results related to the search task were displayed one by one —
in a counter-balanced order among participants — until all 10 had
been assessed.

After finishing the tasks, participants were taken to an online
questionnaire. It was designed to measure subjective responses to
the system, the summary styles and the tasks. Before leaving, par-
ticipants were given $10.00 as compensation for their time.

3. RESULTS
A total of 38 participants completed the experiment. All par-

ticipants reported having normal, or corrected to normal, vision
and hearing. Additionally, all participants indicated not having any

Table 1: Relevance assessment accuracies and response times.
Task 1 required locating a proof; Task 2 required locating a
tutorial. Groups: Control n = 19; Rendered n = 19; Total
n = 76

Accuracy (%) Response Time (s)
Task Summary µ � µ �

1 Control 69.47 13.11 12.58 4.55
Rendered 83.10 12.01 14.06 5.11

2 Control 69.71 20.78 12.39 4.79
Rendered 80.00 15.63 12.70 4.35

1 & 2 (Total) 75.57 16.60 12.93 4.66

problems, such as dyslexia, when reading from a computer screen.
73.7% (n=28) of participants were male and 26.3% (n=10) were
female. 92.1% (n=35) of participants reported being between the
ages of 18 and 24 with the rest reporting being between 25 and 34.
76.3% (n=29) reported their highest level of education as some col-
lege with the rest reporting having earned a higher education title.

The mean response time taken by all participants to assess rel-
evancy for each hit was 12.93 seconds (� = 5.77, n = 757)
and mean relevance assessment accuracy for all participants was
75.57%. A Pearson Correlation test was performed to test for learn-
ing effect across both summary styles. A small correlation between
presentation order and time was found for the Rendered condi-
tion (r = �0.143, p < 0.01) but not for the Control condition
(p > 0.05). Search task presentation order was counter-balanced,
and so this effect arises from practice during the experiment, and
not the presentation order. No correlation was found between ac-
curacy and presentation order for both summary styles (p > 0.05).
A small negative correlation between time and accuracy was found
for the Control (r = �0.114, p < 0.05) but not for the Rendered
condition.

Data collected from the experiment was summarized by partici-
pant and task. An accuracy score was calculated as the percentage
of correct assessments and the response time was calculated as the
average time to make a relevance assessment for the hits in the task.
The mean time to decide was 12.93 seconds (� = 4.66, n = 76)
and the mean accuracy was 75.57% (� = 16.60%, n = 76). Ta-
ble 1 presents the mean and standard deviation for accuracy and
timing metrics for each combination of summary style and search
task, along with the same metrics for all participants.

A 2 (Search Task) x 2 (Summary Style) mixed-effects facto-
rial ANOVA was performed on accuracy scores. Accuracy scores
were found to not change by search task (F (1, 36) = 0.211, p >

0.05) and no interaction effect was shown (F (1, 36) = 0.286, p >

0.05). However, accuracy scores did change based on summary
style (F (1, 36) = 8.730, p < 0.01). On average, the percentage of
correct relevance assessments by participants in the Rendered con-
dition was 17.18% higher than those in the Control. No effects were
observed for response times (p > 0.05). A post-hoc power analysis
for assessment accuracy was performed (⇡ = 0.82), which is above
the level of 0.80 normally considered adequate. A post-hoc power
test for task time was much lower, as the distributions for task time
are much more similar than those for assessment accuracy.

Exit Questionnaire. 73.68% (n = 28) identified Task 1 (shown
in Figure 1) as easier, with 82.14% of participants saying they were
more familiar with the math used (linear algebra vs. calculus). A
Mann-Whitney Independent Samples test found no significant dif-
ference between summary style groups for the questions “I’m fa-
miliar with the math involved in these task” and “I have had infor-
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Questions

1.  Does properly formatting expressions 
increase accuracy in relevance assessment 
for search hits?	


!

2. Does properly formatting expressions 
decrease time needed to assess relevance?
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RENDERING EXPRESSIONS TO IMPROVE ACCURACY OF
RELEVANCE ASSESSMENT FOR MATH SEARCH

MATTHIAS REICHENBACH, ANURAG AGARWAL, RICHARD ZANIBBI
COMPUTER SCIENCE DEPARTMENT, ROCHESTER INSTITUTE OF TECHNOLOGY

SUMMARY STYLES

EVALUATION INTERFACE

INTRODUCTION
Mathematical Information Retrieval
(MIR) concerns search engines that in-
dex and retrieve mathematical expres-
sions along with text in documents. We
make a first study of how properly for-
matting math influences relevance as-
sessments for MIR search engine hits.

HYPOTHESES
Formatting: Properly formatting math expressions in search result hits will improve
their readability, allowing users to assess relevance more quickly and accurately.

Influence of Information Need: We expect a larger effect for a search task intended to
satisfy an informational need (i.e. needing to ascertain specific information), versus one
intended to satisfy a resource need (i.e. a locate a specific resource such as a tutorial).

EXPERIMENT
Study: Human evaluation for different
presentation styles of search hits con-
taining mathematical expressions.

Participants: 38 college students hav-
ing taken at least 2 college-level math
courses.

Protocol: Familiarization task, two ex-
perimental tasks, exit questionnaire.

SEARCH TASKS
Informational Need
You have just finished attending a
Linear Algebra class. Today’s topic
involved finding the inverse matrices
through their adjoint matrix, but the
professor did not explain how the for-
mula A

�1 = 1
detA · adj A was derived

and you want to find that out. You go
to a math search engine and search for
’A�1 = 1

detA · adj A proof.’

Resource Need
Your friend is having trouble under-
standing derivatives of polynomials
and you have agreed to help him. You
need to be prepared to explain that
to him so you want to find tutorials
showing d

dx

ax

b = abx

b�1. You go to
a math search engine and search for
’ d

dx

ax

b = abx

b�1 tutorial.’

Search Tasks
‘Hits’ were taken from	

Google search results 
(control), using LaTeX for 
math in the queries.	

!
‘Relevant’ hits contained 
both a portion of the query 
expression and the 
accompanying  keyword or 
semantically equivalent term. 
Five ‘relevant’ and five 
‘irrelevant’ hits were 
selected for each task.



Study Design
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by Zhao et al. [16]. We hypothesized that better readability should
have a larger effect for the search task intended to satisfy an in-
formational need (i.e. needing to ascertain specific information),
versus the second search task intended to satisfy a resource need
(i.e. a specific type of resource, such as a tutorial).

Design. Posters and email were used to recruit graduate and
undergraduate student participants from the College of Computing
and Information Science and the College of Science at (Anony-
mous School). Respondents completed a pre-screening question-
naire to assess whether they met the required level of math profi-
ciency, defined as having completed two or more college-level math
courses, and experience with computer systems and search engines.
Participants were also required to have normal or corrected to nor-
mal vision and hearing.

Participants were divided into two groups for each hit summary
style. All participants performed three tasks: one familiarization
task and the two search tasks with different information needs pre-
sented in a counterbalanced order.

The experiment design conforms to a mixed factorial design where
the summary style condition was between subjects and the search
task condition was within subjects. The dependent variables (DV),
were participant response time for assessing whether a hit is rel-
evant to a search task, and the accuracy of their relevance assess-
ment. Further details of the experimental design are provided in the
remainder of this section.

2.1 Independent Variables
Search Tasks. We designed two search tasks intended to have

differing mathematical information needs. Zhao et al. [16] distin-
guishes between informational needs that require specific mathe-
matical facts, and resource needs which require a specific resource
(e.g. source code or a tutorial). As this was a preliminary study,
and we anticipated that participants would find making relevance
determinations difficult due to the subject matter, we chose to cre-
ate a small number of tasks. For each search task, participants were
prompted to the underlying information need by means of a short
scenario.

Task 1: The task intended to satisfy an information need asked
the participant to search for a proof of a linear algebra equation
with the query “A�1 = 1

detA · adjA proof." The full text for the
task is shown in Figure 1.

Task 2: For the second task designed to satisfy a resource need,
the participant was asked to search for a tutorial about derivatives
of polynomials with the query “ d

dx

ax

b = abx

b�1 tutorial." Addi-
tional details are available elsewhere [3].

Hit Summary Styles. Two summary styles were used corre-
sponding to the two levels of our summary styles independent vari-
able. The first level (SS1) was used as a control. The hit results
were styled based on how they appeared in the Google’s results
page, effectively using it as the “gold standard" (see Figure 2). Re-
moving the result’s URL and any other links besides the title were
the only modifications to the original summaries. URLs were re-
moved to prevent participants from making relevance assessments
from the URL directly, rather than the content of the search hit re-
sult summary itself.

The second level (SS2) was our experimental condition. SS1
was used as the base for SS2, but with every math expression in it
properly formatted (see Figure 2). Expressions in the result sum-
maries were converted from their original code (e.g. LaTeX) when
available, or visually when not, to MathML — a W3C standard
for describing mathematical notation in XML — using MathJax1.

1http://www.mathjax.org/
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Figure 2.2: Interface of experiment website.

2.5 Materials

The experiment and data collection were performed by a custom made online system. It

guided the participants, collected their responses to the tasks and showed them the final

questionnaire. The description of the two experimental information needs and the familiar-

ization task were included in the system, as well as each of the ten hit results formatted in

each of the two summary styles.

Figure 1: Online interface for collecting relevance assessments.
The search task description and instructions are displayed in
the top of the page, while search hits are displayed in the bot-
tom. When the user presses ‘Yes’ or ‘No,’ the bottom panel is
replaced by the next search hit.

The converted code was then rendered in our experiment website
by Mozilla Firefox’s native MathML rendering engine.

2.2 Search Hits and Data Collection
Search Hit Creation and Relevance Determination. The search

results for each query were selected from a Google results page af-
ter searching with the task’s pre-defined query. Query expressions
were converted to LATEX and then stripped of special characters to
make them suitable for Google search.

A search result hit was only considered relevant if it contained:
1) at least some portion of the query expression, and 2) the ac-
companying text query term or a semantically equivalent word (i.e.
‘proof’ for Task 1, and ‘tutorial’ for Task 2). Five hits matching
this criteria were selected from the search results. Non-relevant
hits were selected from search hits that did not contain the query
expression but did contain some other expression. In some cases,
additional searches were made to generate hits that met the criteria.

Hit Presentation and Data Collection. Data collection was per-
formed using the online system shown in Figure 1. The familiar-
ization and two experimental tasks each had a “card" that slid into
view from the right of the data collection web page. The card was
split into two parts. The top half described the information need
and showed the query terms in a mock-up search bar. This section
was visible throughout the completion of the task so participants
could refer to it if they needed to see the query terms or remem-
ber something about the information need. The bottom half was
used to display hit results and collect binary relevance assessment
responses from the participants using ‘Yes’ and ‘No’ buttons. After
the participant pressed a button to make a relevance assessment, the
current hit result slid out of view towards the left of the screen and
a new hit slid into view from the right.

Hit results were presented one-at-a-time to avoid the large effect
that ordering in search result pages has on assessment accuracy, as
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Participants: 38 college students hav-
ing taken at least 2 college-level math
courses.

Protocol: Familiarization task, two ex-
perimental tasks, exit questionnaire.

SEARCH TASKS
Informational Need
You have just finished attending a
Linear Algebra class. Today’s topic
involved finding the inverse matrices
through their adjoint matrix, but the
professor did not explain how the for-
mula A

�1 = 1
detA · adj A was derived

and you want to find that out. You go
to a math search engine and search for
’A�1 = 1

detA · adj A proof.’

Resource Need
Your friend is having trouble under-
standing derivatives of polynomials
and you have agreed to help him. You
need to be prepared to explain that
to him so you want to find tutorials
showing d

dx

ax

b = abx

b�1. You go to
a math search engine and search for
’ d

dx

ax

b = abx

b�1 tutorial.’

Participants timed as they evaluated 	

search hits for tasks one-at-a-time 	

in a web interface (at left) in 	

Control or Rendered condition 	

(Guan & Cutrell SIGCHI 2007)	

!
Presentation of queries 	

counter-balanced to avoid	

order effects 



Results

Assessment accuracy changed by summary style ( F(1,36) = 8.73, p < 0.01) 
- rendered condition mean 17.18% higher.	


Rendered style reported easier to read (p < 0.05 Mann-Whitney Ind. 
Samples Test)	


Small negative correlation between time and accuracy in control condition 
(r = -0.114, p < 0.05 (Pearson Corr.)).	


No effect for rendering condition on response time (p > 0.05)	
 27

Figure 2: Illustration of summary styles. From top to bottom:
summary style obtained from Google search (SS1, the Control
condition), and then for the same hit but with the math expres-
sions rendered (SS2, the Rendered condition).

shown by Cutrell and Guan [7]. Presenting hits one-at-a-time also
forces participants to consider the contents of each search hit. The
presentation order was counterbalanced across participants to avoid
ordering effects. Using these two strategies, we hoped to obtain a
consistent measurement of perceived relevance for the search hits
across participants. A similar design was used earlier by Kickmeier
and Albert [12].

The system was run on a server with Apache, PHP and MySQL.
The client computers used by the participants had access to the
server and were running Windows 7 and the Firefox browser, and
had a standard keyboard and mouse.

2.3 Protocol
Participants were told to read the familiarization task and fol-

low the instructions on the screen. The familiarization task had the
same structure as the experimental tasks but with only four result
hits. They were verbally told to “respond as quickly as possible, but
take your time to make sure that you carefully consider whether a
search result is relevant before you click Yes or No, even if it takes
you longer than it usually does when you search, that is fine."

The experiment’s website then guided the participants through
the experimental tasks (which were counter-balanced between par-
ticipants). Participants were again asked to respond as quickly as
possible, but take their time to make sure that they carefully con-
sider whether a search result is relevant before clicking Yes or No,
both verbally and with written instructions on-screen. After the fa-
miliarization task was completed and these instructions were pro-
vided verbally, the experimenter stated that he wouldn’t be able to
answer any more questions because the tasks are timed.

Each task started with a short description of the information need
and the pre-defined query used to meet the information need and
generate the results. Participants were asked to read the tasks and,
when ready, click a Start button. At this moment the system started
measuring response times and relevance assessments. Each of the
hit results related to the search task were displayed one by one —
in a counter-balanced order among participants — until all 10 had
been assessed.

After finishing the tasks, participants were taken to an online
questionnaire. It was designed to measure subjective responses to
the system, the summary styles and the tasks. Before leaving, par-
ticipants were given $10.00 as compensation for their time.

3. RESULTS
A total of 38 participants completed the experiment. All par-

ticipants reported having normal, or corrected to normal, vision
and hearing. Additionally, all participants indicated not having any

Table 1: Relevance assessment accuracies and response times.
Task 1 required locating a proof; Task 2 required locating a
tutorial. Groups: Control n = 19; Rendered n = 19; Total
n = 76

Accuracy (%) Response Time (s)
Task Summary µ � µ �

1 Control 69.47 13.11 12.58 4.55
Rendered 83.10 12.01 14.06 5.11

2 Control 69.71 20.78 12.39 4.79
Rendered 80.00 15.63 12.70 4.35

1 & 2 (Total) 75.57 16.60 12.93 4.66

problems, such as dyslexia, when reading from a computer screen.
73.7% (n=28) of participants were male and 26.3% (n=10) were
female. 92.1% (n=35) of participants reported being between the
ages of 18 and 24 with the rest reporting being between 25 and 34.
76.3% (n=29) reported their highest level of education as some col-
lege with the rest reporting having earned a higher education title.

The mean response time taken by all participants to assess rel-
evancy for each hit was 12.93 seconds (� = 5.77, n = 757)
and mean relevance assessment accuracy for all participants was
75.57%. A Pearson Correlation test was performed to test for learn-
ing effect across both summary styles. A small correlation between
presentation order and time was found for the Rendered condi-
tion (r = �0.143, p < 0.01) but not for the Control condition
(p > 0.05). Search task presentation order was counter-balanced,
and so this effect arises from practice during the experiment, and
not the presentation order. No correlation was found between ac-
curacy and presentation order for both summary styles (p > 0.05).
A small negative correlation between time and accuracy was found
for the Control (r = �0.114, p < 0.05) but not for the Rendered
condition.

Data collected from the experiment was summarized by partici-
pant and task. An accuracy score was calculated as the percentage
of correct assessments and the response time was calculated as the
average time to make a relevance assessment for the hits in the task.
The mean time to decide was 12.93 seconds (� = 4.66, n = 76)
and the mean accuracy was 75.57% (� = 16.60%, n = 76). Ta-
ble 1 presents the mean and standard deviation for accuracy and
timing metrics for each combination of summary style and search
task, along with the same metrics for all participants.

A 2 (Search Task) x 2 (Summary Style) mixed-effects facto-
rial ANOVA was performed on accuracy scores. Accuracy scores
were found to not change by search task (F (1, 36) = 0.211, p >

0.05) and no interaction effect was shown (F (1, 36) = 0.286, p >

0.05). However, accuracy scores did change based on summary
style (F (1, 36) = 8.730, p < 0.01). On average, the percentage of
correct relevance assessments by participants in the Rendered con-
dition was 17.18% higher than those in the Control. No effects were
observed for response times (p > 0.05). A post-hoc power analysis
for assessment accuracy was performed (⇡ = 0.82), which is above
the level of 0.80 normally considered adequate. A post-hoc power
test for task time was much lower, as the distributions for task time
are much more similar than those for assessment accuracy.

Exit Questionnaire. 73.68% (n = 28) identified Task 1 (shown
in Figure 1) as easier, with 82.14% of participants saying they were
more familiar with the math used (linear algebra vs. calculus). A
Mann-Whitney Independent Samples test found no significant dif-
ference between summary style groups for the questions “I’m fa-
miliar with the math involved in these task” and “I have had infor-
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Figure 3: Participant responses from the Rendered and Con-
trol summary style conditions for the statement "I had no prob-
lems reading the results presented."

mation needs similar to the tasks I just completed” (p > 0.05).
A significant difference was found for the question “I had no

problems reading the results presented” (p < 0.005). Figure 3 pro-
vides the histogram of responses from the participants. 15 (78.9%)
of participants in the Rendered condition Agreed or Strongly Agreed
that they had no problem reading the hit summaries, in comparison
with only 5 (26.3%) of the participants in the Control condition.

4. DISCUSSION
The results support our hypothesis that the users’ ability to assess

relevance for search hits in math search improves when expressions
are rendered. Participants in the rendered condition had on average
17.18% better relevance assessment accuracy, and reported having
greater ease with reading hit summaries. Only participants in the
Rendered condition showed a learning effect that, if extrapolated,
could mean even shorter response times once users are more prac-
ticed in math search.

Additionally, the small negative correlation between time and
accuracy in the Control presents a violation of the speed-accuracy
trade-off that may occur when the ability to discriminate between
correct and incorrect alternatives is low [6]. When discriminabil-
ity is high, reducing speed increases accuracy, whereas with low
discriminability reducing speed does not increase accuracy — in
fact, in the Control accuracy decreases slightly as response time in-
creases. This is consistent with the participants’ self-reporting of
how difficult it was to read the search hits (Figure 3).

We suggest a couple of explanations for this result. The first is
obvious, in that it easier to see the structure of an expression if it
is rendered. The second is that formatting expressions, particularly
offset expressions such as shown in Figure 2 segments the hit into
smaller regions, making them easier to read. Along those lines,
Kickmeier obtained a surprising result that making words bold at
random in hit summaries (up to a certain frequency) tended to in-
crease assessment accuracy for textual search hits [12].

Our results do not support our hypothesis that relevance assess-
ment accuracy would be influenced by search task. There is a con-
found raised by participants’ higher familiarity with the math in
one of the tasks. Also, a larger number of search tasks would be

needed to properly test this.

5. CONCLUSION
Users are accustomed to search result hits containing mostly text

and links. Our results suggest that rendering mathematical expres-
sions rather than leaving them in textual form (e.g. LATEX) sig-
nificantly increases relevance assessment accuracy for math search
hits without significantly increasing assessment time. Given this,
search engine designers should make a concerted effort to properly
render mathematical expressions presented in hit summaries.

As we knew that evaluating search hits with expressions would
be challenging for participants, we chose to consider only two search
tasks in this first study, and to present hits one-at-a-time in a coun-
terbalanced order to avoid biases arising from placement in a search
results page. Follow-on studies are needed to test whether our find-
ings hold when users consider hits within search result pages, and
to examine whether a larger set of search tasks will show informa-
tion need influencing which hit result summary styles produce the
most accurate relevance assessments by users.

In the future, we are interested in testing different summary styles,
such as modifying hit summaries to increase the amount of docu-
ment context that surround the matched expression in the docu-
ment, showing math expressions that surround a matched expres-
sion, or varying the proportion of expressions to text.
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Study Conclusions	

1.  Does properly formatting expressions 
increase accuracy in relevance assessment?	


Confirmed by results; 17.18% increase in study	


2. Does properly formatting expressions 
decrease the time needed to assess relevance?	


Surprisingly, not observed.  Possible that 
normal speed-accuracy trade-off violated due 
to low discriminability (negative correlation 
for control). 

28



Tangent: 	

Query-by-Expression via 
Matching Symbol Pairs

D. Stalnaker (2013) Math Expression Retrieval Using Symbol Pairs in Layout Trees. Master's 
Thesis, Rochester Institute of Technology (Computer Science), NY, USA (August 2013).



Query-by-Expression
Definition: Retrieving mathematical expressions 
using a math expression as a query	


Existing Approaches	


• Text-Based: linearize expression (e.g. as 
LaTeX) and use existing TF-IDF methods (e.g. 
Lucene) (Miller & Youssef, 2003)	


• Tree-Based:  Tree edit-distance (Kamali et al., 
2013); Substitution trees (Kohlhase and 
Sucan, 2006); Local structural techniques 
(Nguyen et al., 2012; Hiroya and Saito, 2013)
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Tangent (Stalnaker, 2013)

 A ‘Local Tree-Based’ Method	


Main Ideas:	


• Use symbol pairs to capture local and 
global expression structure. 	


• Using specific symbols (no ‘wildcards’)	


• Store pairs in an inverted index, commonly 
used for fast text retrieval to map words 
to documents containing them.	
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Indexing Expressions

Expressions in LaTeX or MathML format 
converted to a Symbol Layout Tree, and then 
a list of quartuples.	


Inverted index from quartuples to list of 
matching expressions is created.  32
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Figure 1: Symbol layout representations. Tuples (c) are defined for every descendant of a symbol in the symbol
layout tree (b). In (c), Dist. is the path length from the parent symbol to the child symbol in the symbol layout
tree, and Vert. is a sum representing vertical displacements along this path: +1 for each superscript/above, -1
for each subscript/below, and 0 for horizontally adjacent/contained by a square root.

3. METHODOLOGY

Our proposed method is a query-by-example technique, retrieving expressions similar to a query expressed in
LATEX or (Canonical) Presentation MathML.2 An inverted index maps a pair of symbols in a particular spatial
arrangement to the set of documents containing it. The representation of spatial arrangement is relative, given
by the distance from the lefmost/dominant symbol to the other symbol in a Symbol Layout Tree (SLT) (see
Figure 1), and change in baseline position from the first to the second symbol. Matching expressions are then
ranked using the sets of matching, query and candidate symbol pair sets.

In this section, we describe Symbol Layout Trees (SLTs), our representation for the relative positions of sym-
bols in an SLT, five di↵erent ranking functions that may be used to order matching expressions, and summarize
our implementation.

3.1 Symbol Layout Representation

Internally, Tangent uses a Symbol Layout Tree (SLT) to represent a query expression. The nodes in this tree
are the symbols in the expression and the edges are the spatial relationships between them (see Figure 1).
The tree is rooted at the leftmost symbol on the main baseline. Similar to LATEX, each symbol can have a
relationship with symbols above/superscript, below/subscript, adjacent and within (for square roots). In some
SLT representations above and superscript relationships are distinguished, but we have combined them to allow
for more robust partial matching. We take a similar approach with below and subscript relationships. Fractions
are encoded as a FRAC symbol with the numerator ABOVE and the denominator BELOW. A square root can
have an expression WITHIN it, and most other symbols will be ADJACENT (at right).

In text information retrieval, the documents are split into words to be inserted into an index - to preserve
structural information, we instead insert pairs of math symbols into the index along with their relative positions.
This symbol pair representation is a tuple (s1, s2, d, v) where s

1

and s
2

are the two symbols in the pair. The
distance, d, is the length of the path between s

1

and s
2

when traversing the SLT. It can also be thought of the
number of symbols passed while moving from s

1

to s
2

when moving away from the root of the tree. Often this is
from left to right, with the exception of fractions and other vertical structures (e.g. summations and integrals).
The vertical displacement, v, is the change in baseline position from s

1

to s
2

. This increases for ABOVE and
SUPER (superscript) relationships, and decreases for BELOW and SUBSC (subscript) relationships. Figure 1
provides an example. There are a worst-case

�n
2

�
pairs inserted for an expression with n symbols, which occurs

for linear expressions (i.e. when there are no branches in the SLT). This symbol pair representation is not well-
defined for tables, so currently MathML expressions containing tables are ignored. We also have not supported
the relatively rare mmultiscripts tag, which allows for scripting at left of a symbol, such as for NC

2

. Extensions
to accommodate these structures are discussed later in the paper.



Retrieval

1. Convert query expression to a list of tuples 
(symparent, symchild, dist, ver. offset)	


2. Lookup each quartuple in the inverted index.  
Add entries to a hash table using expression 
identifiers as keys.   	


3. Rank matched expressions using recall (% 
query tuple matches) and precision (% 
candidate tuple matches), e.g. by F-measure, 
2RP/(R+P)
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Questions

1. Can we obtain more relevant results 
using Tangent than a conventional TF-IDF 
system used to index math?	


2. Is Tangent fast enough for use in real-
time?
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Study Design
20 students and professors participated in the 
experiment. English Wikipedia expression set 
(476,238 expressions).	


Search results were obtained for:	


 1) Lucene-based system (Zanibbi&Yuan, 2011) 	


 2.)Three Tangent variations (ranking fns) 	


Search hits were pooled. Queries and their 
hits were presented in a random order, one-
at-a-time.
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Study Design

36

Figure 2: Evaluation tool used by participants.

4.1 Human Evaluation of Search Results

We conducted a human study to evaluate the search results produced by our system. To do this, we compared our
system’s search results with those produced by an existing text-search-based system constructed using Lucene32

as a benchmark. We did not have access to recent systems supporting structure-based matching at the time of
the experiment6,10,11,19,26 but hope to make comparisons to these systems in the future.

It is di�cult to evaluate relevance for query results automatically. We asked the participants to score by
similarity rather than relevance because relevance is dependent on the search task, which is beyond the scope of
this experiment. The experiment asked participants to score the top ten unique results from each system for ten
queries. The participants were shown one query and result and asked “How similar is the result to the query?”
They were instructed to answer on a 5-point Likert scale (see Figure 2).

Our Wikipedia corpus was used for the experiment. The queries were chosen by randomly sampling a
larger set of queries from the corpus, and picking from this ten that represented diversity in size, type of
structure, and field (see Table 2). Due to time constraints in the experiment, we were unable to compare
all of the ranking functions we developed. We conducted an informal experiment beforehand and determined
that the best-performing ranking functions were F-Measure, Distance, and Prefix. The experiment was thus
a comparison between Tangent with these three ranking functions and the Lucene-based system (henceforth
referred to as Lucene).

The experiment was run by the first author in a controlled setting (a quiet room with a desk and computer),
one participant at a time using a web-based evaluation tool (see Figure 2). Search results were pre-computed
to avoid response time a↵ecting participant ratings. To avoid order e↵ects, query and result presentation were
randomized for each participant: all results for a single query were presented sequentially in a random order, with
the query order randomized. Students and faculty from the Computing and Science colleges at our institution
were recruited through email and posters, with the expectation that this group may find math search useful for
their work.

Table 2: Queries Used in the Experiment
No. Query No. Query
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the experiment6,10,11,19,26 but hope to make comparisons to these systems in the future.

It is di�cult to evaluate relevance for query results automatically. We asked the participants to score by
similarity rather than relevance because relevance is dependent on the search task, which is beyond the scope of
this experiment. The experiment asked participants to score the top ten unique results from each system for ten
queries. The participants were shown one query and result and asked “How similar is the result to the query?”
They were instructed to answer on a 5-point Likert scale (see Figure 2).

Our Wikipedia corpus was used for the experiment. The queries were chosen by randomly sampling a
larger set of queries from the corpus, and picking from this ten that represented diversity in size, type of
structure, and field (see Table 2). Due to time constraints in the experiment, we were unable to compare
all of the ranking functions we developed. We conducted an informal experiment beforehand and determined
that the best-performing ranking functions were F-Measure, Distance, and Prefix. The experiment was thus
a comparison between Tangent with these three ranking functions and the Lucene-based system (henceforth
referred to as Lucene).

The experiment was run by the first author in a controlled setting (a quiet room with a desk and computer),
one participant at a time using a web-based evaluation tool (see Figure 2). Search results were pre-computed
to avoid response time a↵ecting participant ratings. To avoid order e↵ects, query and result presentation were
randomized for each participant: all results for a single query were presented sequentially in a random order, with
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were recruited through email and posters, with the expectation that this group may find math search useful for
their work.
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Results

Discretized Likert similarity scores into ‘similar’ (4,5) and 
‘dissimilar’ (1-3).  Significant difference between similarity 
scores (two-way ANOVA system vs. query for Precision@10; 
p < 2.2 * 10-16)	


    - Prec@1,10: Lucene: (60%, 39%) vs. Tangent: (99%, 60%)	


Response time for Lucene-based results slightly slower (mean 
of 5.84 vs. 5.29 seconds)
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Figure 3: Likert rating counts by system (a) and Response Times by Rating Score (b). There are 2000 evaluations
in total (10 queries; 10 results/query; 20 participants/result).

Previously it was shown that search result ordering a↵ects how likely hits are to be identified as relevant.4 We
presented search results one-at-a-time to avoid similarity ratings being a↵ected by hit list position. Presenting
hits one-at-a-time has the additional benefit of allowing expressions returned by multiple search engines to be
evaluated once, reducing participant e↵ort. After deduplication, the participants were asked to score 214 results,
ten of which were for the familiarization exercise.

Before the experiment, participants were asked to fill out a short demographics survey. Then, they completed
a short familiarization exercise, wherein they scored five results for each of two queries. After this task was
complete and any questions were answered, they began the experiment. In addition to the Likert ratings, we
recorded the time taken by the participant for each query. At the end of the experiment, participants were asked
to rate the di�culty of the task and describe their scoring criteria. The task took approximately 30 minutes,
and participants were paid $10 for their time.

4.1.1 Similarity Evaluation Results

Demographics and Surveys. 20 students and professors participated in the experiment. 15 (75%) of the
participants were male, and 5 (25%) were female. 15 (75%) were between the age of 18 and 24, three (15%) were
25-34, and one (5%) was 35-44. All participants were from fields in science and technology, with 13 (65%) in
computing, 5 (25%)in science, and 2 (10%) in mathematics.

1 participant (5%) found the task very di�cult, 11 (55%) found it di�cult, 7 (35%) were neutral, and 1 (5%)
found it easy. When asked to describe how they evaluated the results, 17 (85%) mentioned using visual similarity
and 10 (50%) mentioned semantic meaning. The additional comments mostly described how di�cult the users
found the task, which aligned with their ratings.

Similarity Ratings. Figure 3(a) provides the distribution of all ratings by system. We can see that the
peaks for the Lucene and Tangent distributions shift from a pronounced peak for ratings of 2 (‘Dissimilar’) for
Lucene, to a larger peak rating of 4 (‘Similar’) for all the Tangent variants. Further, the number of 5 (‘Very
Similar’) ratings nearly match the number of ‘Dissimilar’ ratings in the Lucene system. To our surprise, the
simplest ranking function for Tangent performed slightly better than the Distance and Largest Common Prefix
rankers in terms of raw ratings (however, this di↵erence is not statistically significant).

Likert scale data is ordinal rather than nominal (numeric), and whether it is valid to use Likert data as
numeric values for statistical analysis (e.g. in an analysis of variance (ANOVA)) remains an open question. We
instead binarize the scores to values of either relevant (scored similar or very similar) or not relevant (scored
neutral to very dissimilar). After this, we can calculate precision-at-k for the top-10, top-5, and top-1 results.

A two-way ANOVA comparing the mean top-10 precision ratings for system vs. query shows a very strong
e↵ect for both the system (p < 2.2 ⇤ 10�16) and the queries (p < 8.9 ⇤ 10�16). There was no interaction e↵ect
found between the system and query (p < 0.205). Running pairwise t-tests (using the Bonferroni correction for



Sample Search Results
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Table 3: Top 10 results for 1 + tan2 ✓ = sec2 ✓ for Lucene and Tangent (F-Measure Ranking)
Rank Lucene Tangent Rank Lucene Tangent

1. 1 + tan

2
✓ = sec

2
✓ 1 + tan

2
✓ = sec

2
✓ 6. sin

2
✓ + cos

2
✓ = 1

p
1 + tan

2
✓

o

2. tan

2
✓ + 1 = sec

2
✓ 1 + tan

2
y = sec

2
y 7. cos

2
✓ + sin

2
✓ = 1 ±

p
1 + tan

2
✓

3. sec

2
✓ = 1 + tan

2
✓

d

d✓

tan ✓ = sec

2
✓ 8. 1 + cot

2
✓ = csc

2
✓ 1 + cot

2
A = csc

2
A

4.

1 + tan

2
✓ = sec

2
✓ and

1 + cot

2
✓ = csc

2
✓.

1 + cot

2
✓ = csc

2
✓ 9. cot

2
✓ + 1 = csc

2
✓ 1 + cot

2
y = csc

2
y

5. cos

2
✓ + sin

2
✓ = 1 , sec

2
✓ = 1 + tan

2
✓ 10.

x = r cos ✓ = 2a sin

2
✓ =

2a tan2
✓

sec2 ✓

=

2at2

1+t

2

tan

2
✓ + 1 = sec

2
✓

matches, Tangent’s results are more consistent. Our findings are also in line with recent investigations that
suggest structural similarity matching is better for query-by-expression than text-based retrieval models.6,9

Table 3 illustrates some di↵erences in how the two systems perform matching. Tangent prefers tight matches,
and does not (directly) consider term frequencies as the Lucene system does. This may partly explain the faster
evaluation times for our system, as there are often larger structures from the query that can be visually matched
in the results. The ranking functions for our system (F-Measure, Distance, Largest Common Prefix) largely
returned the same expressions, with small di↵erences. One possible explanation for the success of the simple
F-Measure ranking is that counter to our intuitions, preferring local to distant symbol pair matches does not
seem to have been beneficial. A good example of this are parentheses - matching parentheses at a fixed distance
along a baseline matches expressions with a similar number of arguments between parentheses, even when the
arguments di↵er (e.g. for Query 2); also compare the second hit returned by each algorithm in Table 3.

While much slower than Lucene, our system is not untenable for real-world use without any optimizations.
Both indexing and speed are su�ciently fast. The current high memory usage necessitates a modern computer
that can address more than 4 GB of memory, but most current computers are capable of running Tangent well.
The size of the index could be greatly reduced by removing the Largest Common Prefix ranker, as the paths
for it comprise much of the memory usage, and its addition did not improve the quality of returned results.
Index compression in particular could be a great boon to speed as well as memory usage, because the majority
of the query time is spent transferring the inverted lists from the Redis server to the client. It is likely that an
optimized version of our system could be comparable to Lucene in memory usage, indexing speed, and query
speed, and we propose optimizations below. It is possible to informally compare our query speed with Kamali
and Tompa’s results.10 In an index that is roughly twice the size as ours, their system is roughly twice as fast
(⇠800ms vs ⇠1500ms on average per query). Sojka and Ĺı̌ska’s MIaS24 is even faster, at ⇠300ms. We believe
that one could create a system that as fast as these other systems by optimizing our current framework.

Performance Optimizations. Storing the document references in a compressed form (e.g. using Elias’
gamma code or a bytewise representation) could significantly reduce the index size, as would storing the di↵er-
ences between document identifiers rather than the identifiers themselves.14 This would substantially improve
query time, as the majority of the current query time is spent transferring inverted lists from the server to the
client. Another improvement would be to implement the system in a higher-performance language than Python.
However, most query time is spent reading data from Redis (which calls C libraries), so the improvement would
be minor. Another possibility is to store the index directly in memory, rather than indirectly through Redis.
We briefly experimented with both approaches (using the Go language). Surprisingly, query times were similar
between the current Python-Redis and in-memory Go implementations. Still, it is possible that implementation-
specific speedups may be made.

Our method can also be parallelized/distributed. For an index the size of Wikipedia, a load-balanced set of
servers running the entire index would allow the system to scale to more users, albeit without improving query
time. For larger indexes, performance (query time) starts to become unacceptable, and more work would be
needed to distribute the index itself across servers.

Retrieval Model Improvements. One limitation of Tangent is that it does not allow for substitution of
symbols, although often surrounding structures can compensate for this (e.g. as seen in Table 3). A separate
substitution index could be created where one or both of the symbols are replaced by a type (e.g. VARI-
ABLE, OPERATOR, CONSTANT). A number of existing math retrieval systems use such information in their

Query 2: ū = (x, y, z)

Rank Lucene Tangent F-Measure Tangent Distance Tangent Prefix

1 f(ū) = f(x, y, z) ū = (x, y, z) ū = (x, y, z) ū = (x, y, z)
2 = R(z, dt)|x, y, zi u = (x, y, z) u = (x, y, z) u = (x, y, z)
3 (x _ y)(x̄ _ z)(y _ z) = (x _ y)(x̄ _ z) v = (x, y, z) v = (x, y, z) v = (x, y, z)
4 ū = (x, y, z) r = (x, y, z) r = (x, y, z) r = (x, y, z)

5 z(x) = d
dxy(x) x = (x, y, z) x = (x, y, z) x = (x, y, z)

6 f(t, ū) = f(t, x, y, z) F = (x, y, z) F = (x, y, z) F = (x, y, z)
7 P(X = x|Y = y, Z = z) = P(X = x|Z = z) r

0

= (x, y, z) r

0

= (x, y, z) r

0

= (x, y, z)
8 = H(p, q) ·G(p, q)|p= x

�z

,q= y

�z

~x = (x, y, z) ~x = (x, y, z) ~x = (x, y, z)

9 P = {(x, y, z)|3x+ y � 2z = 10} x = (x, y, z)T (x, y, z) x = (x, y, z)T

10 z(x) = Q(y(x), d
dxy(x)) (x, y, z) x = (x, y, z)T (x, y, z)
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Performance
Space	


Tangent inverted index (uncompressed, 
unoptimized) is 6.19 GB in size	


Time	


Indexing: 53 mins. (Tangent) vs. 8 mins 
(Lucene) - (25 core Linux server)	


Tangent Retrieval: (1.5,1)s (mean,stdev) < 
3s max - most time spent on network data 
transfer  	
 39



Study Conclusions

1. Can we obtain more relevant results 
using Tangent than a conventional TF-IDF 
system used to index math?	


	
 Confirmed; evaluated as significantly more 	
	

	
 relevant than Lucene-based system results.	


2. Is Tangent fast enough for use in real-
time?	


	
 Yes; with (significant) room for improvement.
40



Tangent: Future Work
Optimization of inverted index	


!

Modifications to incorporate matrices and pre-
subscripts/superscripts	


!

Integration with text-based search	


!

*N. Pattaniyil made some progress on these problems in 
early 2014…(NTCIR Competition entry) 41
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