tangent
Not Supported
Z
=
∑
j
g
j
⋅
e
x0
Search
Returned 76 matches (100 formulae, 121 docs)
Lookup 1480.610 ms, Re-ranking 140.161 ms
Found 105457974 tuple postings, 1350385 formulae, 1067490 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7636
-2.0000
6.0000
0.7636
testing/NTCIR/xhtml5/5/0707.0718/0707.0718_1_65.xhtml
ϕ
=
∑
j
ϕ
j
⋅
e
j
Doc 2
0.6931
-2.0000
4.0000
0.6931
testing/NTCIR/xhtml5/5/0809.4842/0809.4842_1_231.xhtml
σ
=
∑
j
α
j
⊗
g
j
Doc 3
0.6931
-8.0000
6.0000
0.6931
testing/NTCIR/xhtml5/7/1006.5298/1006.5298_1_158.xhtml
g
*
=
∑
j
=
1
m
g
j
(
z
)
e
j
*
Doc 4
0.6452
-2.0000
5.0000
1.1715
testing/NTCIR/xhtml5/2/cond-mat0204111/cond-mat0204111_1_11.xhtml
s
i
=
∑
j
g
j
i
r
i
=
∑
j
g
i
j
Doc 5
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_35.xhtml
f
=
∑
j
∈
F
g
j
Doc 6
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_13.xhtml
f
=
∑
j
∈
J
g
j
Doc 7
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_16.xhtml
f
=
∑
j
∈
J
g
j
Doc 8
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/math9704219/math9704219_1_51.xhtml
Z
=
∑
j
n
j
Z
j
Doc 9
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_92.xhtml
f
=
∑
j
∈
J
g
j
Doc 10
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/7/1107.0175/1107.0175_1_6.xhtml
f
=
∑
j
g
j
h
j
Doc 11
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.1433/1203.1433_1_106.xhtml
Z
=
∑
j
n
j
Z
j
Doc 12
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1205.3416/1205.3416_1_12.xhtml
f
=
∑
j
g
j
h
j
Doc 13
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_43.xhtml
Z
=
∑
j
y
j
Z
j
Doc 14
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_42.xhtml
Z
=
∑
j
y
j
Z
j
Doc 15
0.6452
-2.0000
5.0000
0.6452
testing/NTCIR/xhtml5/4/math0512379/math0512379_1_70.xhtml
Z
=
∑
j
n
j
Z
j
Doc 16
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/7/1011.4031/1011.4031_1_54.xhtml
s
=
∑
j
a
j
e
j
Doc 17
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/3/math0410220/math0410220_1_42.xhtml
f
=
∑
j
q
j
g
j
Doc 18
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/5/0706.4411/0706.4411_1_17.xhtml
ψ
=
∑
j
c
j
e
j
Doc 19
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/7/1006.0773/1006.0773_1_66.xhtml
h
=
∑
j
α
j
e
j
Doc 20
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/9/1307.4383/1307.4383_1_37.xhtml
p
=
∑
j
λ
j
e
j
Doc 21
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/4/math0509663/math0509663_1_15.xhtml
ψ
=
∑
j
c
j
e
j
Doc 22
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/8/1207.5256/1207.5256_1_31.xhtml
m
=
∑
j
e
j
g
j
Doc 23
0.6452
-2.0000
4.0000
0.6452
testing/NTCIR/xhtml5/10/alg-geom9702014/alg-geom9702014_1_200.xhtml
X
=
∑
j
f
j
e
j
Doc 24
0.6452
-3.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_7.xhtml
f
=
∑
j
∈
J
g
j
,
Doc 25
0.6452
-3.0000
4.0000
0.6452
testing/NTCIR/xhtml5/4/math0506073/math0506073_1_19.xhtml
B
=
∑
j
y
j
e
j
*
Doc 26
0.6452
-4.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/q-alg9508014/q-alg9508014_1_132.xhtml
x
i
¯
=
∑
j
g
j
i
x
j
Doc 27
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/10/alg-geom9712016/alg-geom9712016_1_17.xhtml
f
=
∑
j
=
1
p
g
j
h
j
Doc 28
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1209.3530/1209.3530_1_128.xhtml
f
=
∑
j
=
1
n
g
j
f
j
Doc 29
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/5/0706.4113/0706.4113_1_52.xhtml
F
=
∑
j
=
1
m
g
j
f
j
Doc 30
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/8/1207.0235/1207.0235_1_41.xhtml
𝐆
=
∑
j
=
1
N
g
j
𝐱
j
Doc 31
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/7/1106.2384/1106.2384_1_37.xhtml
φ
=
∑
j
=
0
m
g
j
σ
j
Doc 32
0.6452
-5.0000
5.0000
0.6452
testing/NTCIR/xhtml5/9/1307.2171/1307.2171_1_5.xhtml
e
i
′
=
∑
j
g
j
i
e
j
Doc 33
0.6452
-5.0000
4.0000
0.6452
testing/NTCIR/xhtml5/9/1303.7366/1303.7366_1_70.xhtml
x
=
∑
j
=
1
m
λ
j
e
j
Doc 34
0.6452
-5.0000
4.0000
0.6452
testing/NTCIR/xhtml5/9/1303.7366/1303.7366_1_72.xhtml
x
=
∑
j
=
1
m
λ
j
e
j
Doc 35
0.6452
-7.0000
5.0000
0.6452
testing/NTCIR/xhtml5/6/1002.3923/1002.3923_1_3.xhtml
δ
g
=
∑
j
=
1
k
g
j
e
j
*
Doc 36
0.5714
-4.0000
5.0000
1.0977
testing/NTCIR/xhtml5/9/1303.2951/1303.2951_1_118.xhtml
g
o
p
=
∑
j
g
j
o
p
g
=
∑
j
g
j
Doc 37
0.5263
0.0000
4.0000
0.5263
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_91.xhtml
γ
=
∑
g
j
Doc 38
0.5263
-1.0000
5.0000
0.5263
testing/NTCIR/xhtml5/7/1009.5187/1009.5187_1_45.xhtml
g
=
∑
j
g
j
Doc 39
0.5263
-2.0000
5.0000
0.9331
testing/NTCIR/xhtml5/5/0809.4940/0809.4940_1_29.xhtml
=
∑
j
∈
κ
g
j
∑
j
g
j
≡
1
Doc 40
0.5263
-2.0000
5.0000
0.5263
testing/NTCIR/xhtml5/5/0807.2193/0807.2193_1_51.xhtml
g
=
∑
j
g
j
.
Doc 41
0.5263
-2.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_56.xhtml
g
=
∑
j
∈
g
j
Doc 42
0.5263
-2.0000
4.0000
0.9331
testing/NTCIR/xhtml5/7/1108.0962/1108.0962_1_165.xhtml
β
=
∑
g
j
χ
j
G
(
x
)
=
∑
g
j
x
j
Doc 43
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/6/0902.2495/0902.2495_1_202.xhtml
Z
=
∑
j
𝐑
γ
j
Doc 44
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/6/0911.2275/0911.2275_1_51.xhtml
f
=
∑
g
j
f
j
Doc 45
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/10/hep-ph9504294/hep-ph9504294_1_23.xhtml
S
=
∑
g
j
I
j
Doc 46
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/2/hep-th0108110/hep-th0108110_1_39.xhtml
e
0
=
∑
j
e
j
Doc 47
0.5263
-2.0000
4.0000
0.5263
testing/NTCIR/xhtml5/1/cond-mat9510046/cond-mat9510046_1_8.xhtml
N
=
∑
j
N
j
e
Doc 48
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0508210/math0508210_1_89.xhtml
g
=
∑
j
2
g
j
2
Doc 49
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/5/0811.0104/0811.0104_1_64.xhtml
g
^
=
∑
j
g
^
j
Doc 50
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/9/1303.1427/1303.1427_1_103.xhtml
g
=
∑
j
∈
n
g
j
Doc 51
0.5263
-3.0000
5.0000
0.5263
testing/NTCIR/xhtml5/4/math0612457/math0612457_1_104.xhtml
g
=
∑
j
∈
ℤ
g
j
Doc 52
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/5/0705.3321/0705.3321_1_11.xhtml
u
=
∑
j
u
j
e
j
Doc 53
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/3/math-ph0306066/math-ph0306066_1_79.xhtml
λ
=
∑
j
λ
j
e
j
Doc 54
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/3/math0405231/math0405231_1_22.xhtml
x
=
∑
j
x
j
e
j
Doc 55
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/6/0904.0276/0904.0276_1_163.xhtml
a
=
∑
j
a
j
e
j
Doc 56
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/3/math0405231/math0405231_1_83.xhtml
z
=
∑
j
z
j
e
j
Doc 57
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/4/math0604510/math0604510_1_9.xhtml
d
=
∑
j
d
j
e
j
Doc 58
0.5263
-3.0000
4.0000
0.5263
testing/NTCIR/xhtml5/10/math9804067/math9804067_1_12.xhtml
x
=
∑
j
x
j
e
j
Doc 59
0.5263
-3.0000
3.0000
0.5263
testing/NTCIR/xhtml5/1/cond-mat0404593/cond-mat0404593_1_175.xhtml
n
i
=
∑
j
e
i
j
Doc 60
0.5263
-3.0000
3.0000
0.5263
testing/NTCIR/xhtml5/6/0902.3788/0902.3788_1_26.xhtml
b
i
=
∑
j
e
i
j
Doc 61
0.5263
-3.0000
3.0000
0.5263
testing/NTCIR/xhtml5/9/1308.6295/1308.6295_1_11.xhtml
a
i
=
∑
j
e
i
j
Doc 62
0.5263
-4.0000
4.0000
0.5263
testing/NTCIR/xhtml5/10/alg-geom9709015/alg-geom9709015_1_107.xhtml
f
*
G
=
∑
g
j
F
j
Doc 63
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_280.xhtml
V
(
q
)
=
∑
j
g
j
G
j
Doc 64
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/9/1306.0781/1306.0781_1_37.xhtml
g
=
∑
j
g
j
x
j
∈
𝒜
Doc 65
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/3/math0310182/math0310182_1_84.xhtml
g
(
x
)
=
∑
j
g
j
x
j
Doc 66
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/2/nlin0107067/nlin0107067_1_15.xhtml
g
(
z
)
=
∑
j
g
j
z
j
Doc 67
0.5263
-5.0000
5.0000
0.5263
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_287.xhtml
V
(
q
)
=
∑
j
g
j
G
j
Doc 68
0.5263
-5.0000
4.0000
1.0526
testing/NTCIR/xhtml5/10/hep-th9703126/hep-th9703126_1_11.xhtml
β
¯
=
∑
j
β
j
e
¯
j
γ
¯
=
∑
j
γ
j
e
¯
j
Doc 69
0.5263
-5.0000
4.0000
0.5263
testing/NTCIR/xhtml5/7/1107.4293/1107.4293_1_49.xhtml
s
^
=
∑
j
s
j
e
^
j
Doc 70
0.5263
-5.0000
4.0000
0.5263
testing/NTCIR/xhtml5/1/quant-ph0004090/quant-ph0004090_1_90.xhtml
Z
=
∑
j
e
-
β
E
j
,
Doc 71
0.5263
-6.0000
5.0000
0.5263
testing/NTCIR/xhtml5/7/1101.5381/1101.5381_1_304.xhtml
g
(
x
)
=
∑
j
g
j
(
x
)
,
Doc 72
0.5263
-6.0000
4.0000
0.5263
testing/NTCIR/xhtml5/2/math0110099/math0110099_1_172.xhtml
w
∞
=
∑
j
w
j
e
i
j
θ
Doc 73
0.5263
-7.0000
4.0000
0.5263
testing/NTCIR/xhtml5/7/1107.2839/1107.2839_1_7.xhtml
Z
=
∑
j
e
-
β
E
R
,
j
,
Doc 74
0.4800
-5.0000
5.0000
0.4800
testing/NTCIR/xhtml5/7/1007.2010/1007.2010_1_134.xhtml
N
(
1
)
=
∑
j
e
j
⊗
e
j
Doc 75
0.4800
-5.0000
5.0000
0.4800
testing/NTCIR/xhtml5/7/1007.2010/1007.2010_1_140.xhtml
N
(
1
)
=
∑
j
e
j
⊗
e
j
Doc 76
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_65.xhtml
Z
=
∑
j
Z
j
Doc 77
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_51.xhtml
Z
=
∑
j
Z
j
Doc 78
0.4478
-1.0000
5.0000
0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_29.xhtml
Z
=
∑
j
Z
j
Doc 79
0.4478
-1.0000
4.0000
0.4478
testing/NTCIR/xhtml5/7/1009.0684/1009.0684_1_29.xhtml
∑
j
g
j
=
p
Doc 80
0.4478
-1.0000
4.0000
0.4478
testing/NTCIR/xhtml5/7/1009.0684/1009.0684_1_27.xhtml
∑
j
g
j
=
p
Doc 81
0.4478
-2.0000
4.0000
0.4478
testing/NTCIR/xhtml5/1/math0002158/math0002158_1_106.xhtml
∑
j
g
j
⊗
f
j
Doc 82
0.4478
-3.0000
5.0000
0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_88.xhtml
N
≤
Z
=
∑
j
Z
j
Doc 83
0.4478
-3.0000
5.0000
0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_11.xhtml
N
≫
Z
=
∑
j
Z
j
Doc 84
0.4478
-4.0000
4.0000
0.4478
testing/NTCIR/xhtml5/7/1006.5551/1006.5551_1_54.xhtml
∫
∑
j
g
j
d
γ
=
0
Doc 85
0.4478
-4.0000
3.0000
0.4478
testing/NTCIR/xhtml5/7/1104.0487/1104.0487_1_33.xhtml
e
2
π
i
η
∑
j
λ
j
Doc 86
0.4068
0.0000
4.0000
0.4068
testing/NTCIR/xhtml5/10/alg-geom9606014/alg-geom9606014_1_29.xhtml
∑
j
g
j
Doc 87
0.4068
-2.0000
4.0000
0.4068
testing/NTCIR/xhtml5/4/math0510492/math0510492_1_154.xhtml
g
∼
∑
j
g
j
Doc 88
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/6/0906.2989/0906.2989_1_141.xhtml
∑
j
g
j
′
(
x
)
Doc 89
0.4068
-3.0000
4.0000
0.4068
testing/NTCIR/xhtml5/8/1210.2792/1210.2792_1_15.xhtml
g
=
∑
j
g
ϕ
j
Doc 90
0.4068
-3.0000
3.0000
0.4068
testing/NTCIR/xhtml5/1/math0001170/math0001170_1_63.xhtml
e
∑
j
n
j
A
j
Doc 91
0.4068
-3.0000
3.0000
0.4068
testing/NTCIR/xhtml5/7/1010.2986/1010.2986_1_46.xhtml
f
=
e
∑
j
U
j
Doc 92
0.4068
-4.0000
4.0000
0.4068
testing/NTCIR/xhtml5/4/math0601214/math0601214_1_126.xhtml
Z
s
=
∑
j
Z
s
j
Doc 93
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/2/math0104069/math0104069_1_82.xhtml
x
=
∑
j
x
j
e
j
Doc 94
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/8/1211.5096/1211.5096_1_44.xhtml
f
=
∑
f
j
e
j
*
Doc 95
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/2/math0106132/math0106132_1_50.xhtml
x
=
∑
j
x
j
e
j
Doc 96
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/2/math0104070/math0104070_1_9.xhtml
x
=
∑
j
x
j
e
j
Doc 97
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/2/math0110305/math0110305_1_75.xhtml
x
=
∑
j
x
j
e
j
Doc 98
0.4068
-4.0000
3.0000
0.4068
testing/NTCIR/xhtml5/2/math0104069/math0104069_1_105.xhtml
x
=
∑
j
x
j
e
j
Doc 99
0.4068
-5.0000
3.0000
0.4068
testing/NTCIR/xhtml5/8/1206.1310/1206.1310_1_49.xhtml
γ
=
∑
j
(
±
)
e
1
j
Doc 100
0.4068
-8.0000
4.0000
0.4068
testing/NTCIR/xhtml5/5/0811.1093/0811.1093_1_28.xhtml
∑
j
=
0
∞
g
j
e
-
λ
j
z
Doc 101
0.3200
-3.0000
2.0000
0.3200
testing/NTCIR/xhtml5/8/1209.1740/1209.1740_1_69.xhtml
Z
j
=
e
i
θ
j
Doc 102
0.3200
-3.0000
2.0000
0.3200
testing/NTCIR/xhtml5/7/1103.4075/1103.4075_1_8.xhtml
z
j
=
e
i
g
j
Doc 103
0.3200
-4.0000
2.0000
0.3200
testing/NTCIR/xhtml5/3/math0311039/math0311039_1_56.xhtml
f
j
=
e
i
λ
g
j
Doc 104
0.2857
-2.0000
3.0000
0.2857
testing/NTCIR/xhtml5/2/math0212029/math0212029_1_36.xhtml
∑
g
j
q
j
Doc 105
0.2857
-3.0000
3.0000
0.2857
testing/NTCIR/xhtml5/3/math-ph0310010/math-ph0310010_1_2.xhtml
e
′
=
g
⋅
e
Doc 106
0.2857
-3.0000
3.0000
0.2857
testing/NTCIR/xhtml5/7/1005.5002/1005.5002_1_15.xhtml
g
⋅
e
≠
e
¯
Doc 107
0.2857
-4.0000
2.0000
0.2857
testing/NTCIR/xhtml5/6/0907.4225/0907.4225_1_43.xhtml
∑
j
e
i
λ
j
τ
Doc 108
0.2857
-4.0000
2.0000
0.2857
testing/NTCIR/xhtml5/6/0907.4225/0907.4225_1_23.xhtml
∑
j
e
i
λ
j
τ
Doc 109
0.2857
-4.0000
2.0000
0.2857
testing/NTCIR/xhtml5/6/0907.4225/0907.4225_1_14.xhtml
∑
j
e
i
λ
j
τ
Doc 110
0.2857
-4.0000
2.0000
0.2857
testing/NTCIR/xhtml5/6/0907.4225/0907.4225_1_17.xhtml
∑
j
e
i
λ
j
τ
Doc 111
0.2857
-4.0000
2.0000
0.2857
testing/NTCIR/xhtml5/6/0907.4225/0907.4225_1_13.xhtml
∑
j
e
i
λ
j
τ
Doc 112
0.2857
-5.0000
3.0000
0.2857
testing/NTCIR/xhtml5/9/1306.5956/1306.5956_1_30.xhtml
g
=
∑
g
j
e
j
*
Doc 113
0.2857
-5.0000
2.0000
0.2857
testing/NTCIR/xhtml5/5/0806.2592/0806.2592_1_35.xhtml
f
=
∑
f
j
e
j
*
Doc 114
0.2857
-5.0000
2.0000
0.2857
testing/NTCIR/xhtml5/10/math-ph9907013/math-ph9907013_1_73.xhtml
E
∑
j
e
t
⋅
τ
j
Doc 115
0.1818
-6.0000
2.0000
0.1818
testing/NTCIR/xhtml5/8/1206.6688/1206.6688_1_115.xhtml
g
j
:
z
↦
λ
j
e
z
Doc 116
0.1818
-6.0000
2.0000
0.1818
testing/NTCIR/xhtml5/8/1206.6688/1206.6688_1_113.xhtml
g
j
:
z
↦
λ
j
e
z
Doc 117
0.1600
-2.0000
1.0000
0.1600
testing/NTCIR/xhtml5/7/1106.3370/1106.3370_1_116.xhtml
e
n
j
j
Doc 118
0.1600
-2.0000
1.0000
0.1600
testing/NTCIR/xhtml5/7/1007.2010/1007.2010_1_122.xhtml
(
e
j
)
j
Doc 119
0.1600
-2.0000
1.0000
0.1600
testing/NTCIR/xhtml5/7/1005.4300/1005.4300_1_8.xhtml
e
j
N
j
Doc 120
0.1600
-2.0000
1.0000
0.1600
testing/NTCIR/xhtml5/7/1005.4300/1005.4300_1_6.xhtml
e
j
N
j
Doc 121
0.1600
-2.0000
1.0000
0.1600
testing/NTCIR/xhtml5/7/1005.4300/1005.4300_1_7.xhtml
e
j
N
j