tangent
Not Supported
D
g
u
x0
D
t
-
f
0
v
a
-
β
y
v
g
=
0
Search
Returned 90 matches (100 formulae, 105 docs)
Lookup 598.281 ms, Re-ranking 490.781 ms
Found 3899680 tuple postings, 2305547 formulae, 1495592 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.5029
-10.0000
5.0000
0.5029
testing/NTCIR/xhtml5/8/1204.0157/1204.0157_1_28.xhtml
d
2
w
d
τ
2
-
A
d
w
d
τ
-
F
(
τ
)
w
=
0
Doc 2
0.5029
-10.0000
5.0000
0.5029
testing/NTCIR/xhtml5/8/1204.0157/1204.0157_1_29.xhtml
d
2
w
d
τ
2
-
A
d
w
d
τ
-
F
(
τ
)
w
=
0
Doc 3
0.4586
-4.0000
5.0000
0.4586
testing/NTCIR/xhtml5/1/math0003110/math0003110_1_51.xhtml
D
=
x
y
-
u
v
-
h
x
v
=
1.
Doc 4
0.4586
-16.0000
7.0000
0.4586
testing/NTCIR/xhtml5/6/1003.4698/1003.4698_1_61.xhtml
∂
a
v
-
Δ
D
v
-
β
2
u
η
v
=
0
,
v
(
0
)
=
ξ
μ
V
,
Doc 5
0.4473
-13.0000
5.0000
0.4473
testing/NTCIR/xhtml5/8/1204.0157/1204.0157_1_27.xhtml
d
2
w
d
τ
2
-
A
τ
d
w
d
τ
-
F
(
τ
)
w
=
0
Doc 6
0.4473
-13.0000
5.0000
0.4473
testing/NTCIR/xhtml5/8/1204.0157/1204.0157_1_24.xhtml
d
2
w
d
τ
2
-
A
τ
d
w
d
τ
-
F
(
τ
)
w
=
0
Doc 7
0.4043
0.0000
5.0000
0.4043
testing/NTCIR/xhtml5/9/1310.2769/1310.2769_1_100.xhtml
A
v
-
α
I
v
=
0
Doc 8
0.4043
-7.0000
5.0000
0.4043
testing/NTCIR/xhtml5/5/0811.3008/0811.3008_1_28.xhtml
(
a
+
b
)
v
p
p
p
-
F
a
v
p
=
0
Doc 9
0.3913
-4.0000
5.0000
0.3913
testing/NTCIR/xhtml5/5/math0703769/math0703769_1_115.xhtml
-
∂
v
k
∂
t
-
ℒ
v
k
-
f
Doc 10
0.3913
-5.0000
5.0000
0.3913
testing/NTCIR/xhtml5/5/0712.2007/0712.2007_1_24.xhtml
ψ
x
x
-
1
4
ψ
-
λ
y
ψ
=
0
Doc 11
0.3721
-2.0000
4.0000
0.3721
testing/NTCIR/xhtml5/10/chao-dyn9803032/chao-dyn9803032_1_13.xhtml
v
t
*
-
i
v
v
x
=
0.
Doc 12
0.3721
-6.0000
6.0000
0.3721
testing/NTCIR/xhtml5/6/1003.0398/1003.0398_1_53.xhtml
-
Δ
g
+
v
-
s
(
n
-
s
)
v
=
0
Doc 13
0.3721
-6.0000
6.0000
0.3721
testing/NTCIR/xhtml5/6/1003.0398/1003.0398_1_49.xhtml
-
Δ
g
+
v
-
s
(
n
-
s
)
v
=
0
Doc 14
0.3721
-6.0000
5.0000
0.3721
testing/NTCIR/xhtml5/6/0907.4517/0907.4517_1_115.xhtml
v
i
v
j
-
q
i
j
v
j
v
i
=
0
Doc 15
0.3721
-8.0000
5.0000
0.3721
testing/NTCIR/xhtml5/10/math-ph9807003/math-ph9807003_1_6.xhtml
u
2
w
3
v
2
-
u
3
w
2
v
3
=
0
Doc 16
0.3500
-7.0000
5.0000
1.0500
testing/NTCIR/xhtml5/5/0705.2488/0705.2488_1_3.xhtml
D
𝐐
ξ
D
t
-
𝐐
λ
⊗
𝐐
ξ
=
0
D
2
𝐐
ξ
D
t
2
-
𝐐
ρ
⊗
𝐐
ξ
=
0
D
2
𝐐
ψ
D
t
2
-
𝐐
ρ
⊗
𝐐
ψ
=
0
Doc 17
0.3500
-7.0000
4.0000
0.3500
testing/NTCIR/xhtml5/5/0811.3630/0811.3630_1_7.xhtml
d
v
1
d
t
-
λ
v
1
v
3
=
0
Doc 18
0.3500
-11.0000
3.0000
0.3500
testing/NTCIR/xhtml5/10/hep-th9510052/hep-th9510052_1_32.xhtml
∂
2
u
ℓ
∂
t
2
-
c
ℓ
2
Δ
u
ℓ
=
0
,
Doc 19
0.3500
-18.0000
1.0000
0.3500
testing/NTCIR/xhtml5/7/1106.2012/1106.2012_1_27.xhtml
∂
v
∂
t
=
∂
f
1
∂
u
-
f
2
v
k
g
-
f
3
v
k
n
.
Doc 20
0.3347
-9.0000
5.0000
0.3347
testing/NTCIR/xhtml5/2/hep-ph0206001/hep-ph0206001_1_35.xhtml
-
v
j
′′
-
ω
2
v
j
+
V
(
x
)
v
j
=
0
Doc 21
0.3167
-2.0000
5.0000
0.3167
testing/NTCIR/xhtml5/6/0909.2326/0909.2326_1_96.xhtml
Δ
v
-
2
K
L
v
=
0
Doc 22
0.3167
-2.0000
5.0000
0.3167
testing/NTCIR/xhtml5/6/0909.2326/0909.2326_1_93.xhtml
Δ
v
-
2
K
L
v
=
0
Doc 23
0.3167
-3.0000
5.0000
0.3167
testing/NTCIR/xhtml5/2/math0211460/math0211460_1_46.xhtml
τ
d
v
-
P
(
τ
)
v
=
0
Doc 24
0.3167
-5.0000
5.0000
0.3167
testing/NTCIR/xhtml5/5/0802.2131/0802.2131_1_35.xhtml
D
u
ξ
→
D
t
=
F
ξ
→
,
Doc 25
0.3167
-5.0000
5.0000
0.3167
testing/NTCIR/xhtml5/7/1106.1118/1106.1118_1_13.xhtml
f
v
˙
2
-
2
R
˙
v
˙
=
1
,
Doc 26
0.3167
-6.0000
5.0000
0.3167
testing/NTCIR/xhtml5/10/q-alg9712008/q-alg9712008_1_25.xhtml
-
q
2
v
~
w
+
w
v
~
=
0
,
Doc 27
0.3167
-6.0000
5.0000
0.3167
testing/NTCIR/xhtml5/10/dg-ga9601006/dg-ga9601006_1_49.xhtml
-
Δ
ω
v
+
β
0
d
0
v
=
δ
y
Doc 28
0.3167
-7.0000
5.0000
0.3167
testing/NTCIR/xhtml5/6/1001.2306/1001.2306_1_62.xhtml
□
~
δ
v
k
-
3
2
δ
v
k
=
0
Doc 29
0.3167
-7.0000
4.0000
0.6123
testing/NTCIR/xhtml5/6/0912.4606/0912.4606_1_20.xhtml
D
p
a
D
t
=
m
D
v
a
D
t
D
C
i
j
D
t
=
0
,
Doc 30
0.3167
-9.0000
5.0000
0.3167
testing/NTCIR/xhtml5/6/1001.2306/1001.2306_1_69.xhtml
δ
v
k
+
δ
v
¨
k
-
∇
2
δ
v
k
=
0
Doc 31
0.3167
-9.0000
5.0000
0.3167
testing/NTCIR/xhtml5/10/quant-ph9905019/quant-ph9905019_1_23.xhtml
v
′′
+
k
2
ξ
2
v
+
β
1
k
v
=
0
,
Doc 32
0.3167
-13.0000
5.0000
0.3167
testing/NTCIR/xhtml5/10/solv-int9710010/solv-int9710010_1_18.xhtml
v
t
+
β
v
3
x
-
α
2
6
β
v
2
v
x
=
0
,
Doc 33
0.2956
0.0000
4.0000
0.2956
testing/NTCIR/xhtml5/6/0912.4606/0912.4606_1_4.xhtml
D
p
i
D
t
Doc 34
0.2956
0.0000
4.0000
0.2956
testing/NTCIR/xhtml5/7/1010.3655/1010.3655_1_88.xhtml
D
C
K
D
t
Doc 35
0.2956
-1.0000
5.0000
0.2956
testing/NTCIR/xhtml5/4/math0511311/math0511311_1_77.xhtml
∫
β
d
v
g
=
0
Doc 36
0.2956
-1.0000
4.0000
0.8867
testing/NTCIR/xhtml5/5/0711.3258/0711.3258_1_49.xhtml
D
χ
2
D
t
=
D
χ
3
D
t
=
D
χ
4
D
t
=
Doc 37
0.2956
-1.0000
4.0000
0.2956
testing/NTCIR/xhtml5/7/1104.1339/1104.1339_1_71.xhtml
D
𝒅
M
D
t
φ
Doc 38
0.2956
-8.0000
4.0000
0.2956
testing/NTCIR/xhtml5/8/1209.6250/1209.6250_1_21.xhtml
∂
v
ϵ
∂
t
-
ϵ
Δ
v
ϵ
=
0
,
Doc 39
0.2956
-8.0000
2.0000
0.2956
testing/NTCIR/xhtml5/8/1207.1543/1207.1543_1_16.xhtml
∂
f
1
∂
u
-
f
2
v
k
1
=
0.
Doc 40
0.2772
-5.0000
5.0000
0.2772
testing/NTCIR/xhtml5/7/1007.2482/1007.2482_1_80.xhtml
-
Δ
v
+
V
(
x
)
v
=
0
in
Ω
Doc 41
0.2772
-7.0000
5.0000
0.2772
testing/NTCIR/xhtml5/9/1401.1175/1401.1175_1_292.xhtml
v
t
-
Δ
v
-
λ
(
t
,
x
)
v
≥
0
Doc 42
0.2772
-7.0000
5.0000
0.2772
testing/NTCIR/xhtml5/9/1309.1664/1309.1664_1_115.xhtml
v
′′′
-
ε
v
′
+
h
v
2
v
′
=
0
Doc 43
0.2772
-8.0000
5.0000
0.2772
testing/NTCIR/xhtml5/8/1109.5933/1109.5933_1_83.xhtml
-
Δ
v
+
q
2
(
x
,
y
)
v
=
0
in
Ω
Doc 44
0.2772
-9.0000
5.0000
0.2772
testing/NTCIR/xhtml5/10/gr-qc9807002/gr-qc9807002_1_8.xhtml
v
.
.
-
H
v
.
+
ω
2
(
t
)
v
=
0
,
Doc 45
0.2772
-9.0000
5.0000
0.2772
testing/NTCIR/xhtml5/10/gr-qc9904027/gr-qc9904027_1_15.xhtml
v
.
.
-
H
v
.
+
ω
2
(
t
)
v
=
0
,
Doc 46
0.2772
-9.0000
5.0000
0.2772
testing/NTCIR/xhtml5/2/math0211131/math0211131_1_183.xhtml
P
′
(
x
)
-
2
x
-
β
u
0
*
(
x
)
=
0
Doc 47
0.2609
-1.0000
4.0000
0.2609
testing/NTCIR/xhtml5/9/1310.6683/1310.6683_1_61.xhtml
v
+
K
B
v
=
0
Doc 48
0.2609
-3.0000
5.0000
0.2609
testing/NTCIR/xhtml5/10/gr-qc9907080/gr-qc9907080_1_44.xhtml
2
v
˙
-
3
u
v
=
0
Doc 49
0.2609
-3.0000
5.0000
0.2609
testing/NTCIR/xhtml5/8/1204.1193/1204.1193_1_56.xhtml
v
5
-
3
β
v
3
=
0
Doc 50
0.2609
-5.0000
4.0000
0.4650
testing/NTCIR/xhtml5/8/1207.0956/1207.0956_1_38.xhtml
v
j
C
-
u
k
B
+
c
=
0
v
1
C
-
u
1
B
+
c
=
0
Doc 51
0.2609
-5.0000
4.0000
0.2609
testing/NTCIR/xhtml5/8/1203.3655/1203.3655_1_6.xhtml
v
p
t
2
-
p
v
t
2
=
0
Doc 52
0.2609
-7.0000
4.0000
0.2609
testing/NTCIR/xhtml5/2/hep-th0301129/hep-th0301129_1_49.xhtml
v
¯
k
u
k
=
u
¯
k
v
k
=
0
Doc 53
0.2609
-8.0000
5.0000
0.2609
testing/NTCIR/xhtml5/6/0904.2909/0904.2909_1_35.xhtml
v
ξ
q
-
v
η
q
+
v
ξ
y
=
0
,
Doc 54
0.2609
-8.0000
5.0000
0.2609
testing/NTCIR/xhtml5/1/1105.2236/1105.2236_1_3.xhtml
∂
y
u
+
∂
x
v
-
β
∂
y
v
=
0.
Doc 55
0.2609
-8.0000
5.0000
0.2609
testing/NTCIR/xhtml5/5/0802.3308/0802.3308_1_92.xhtml
∂
t
v
ν
-
ν
∂
z
z
v
ν
=
0
,
Doc 56
0.2609
-8.0000
5.0000
0.2609
testing/NTCIR/xhtml5/7/1004.3133/1004.3133_1_1.xhtml
v
t
+
v
x
x
x
-
6
v
v
x
=
0
Doc 57
0.2609
-9.0000
5.0000
0.2609
testing/NTCIR/xhtml5/8/1204.5085/1204.5085_1_7.xhtml
v
¨
+
3
h
v
˙
-
3
h
2
v
=
0
,
Doc 58
0.2609
-9.0000
5.0000
0.2609
testing/NTCIR/xhtml5/8/1109.4915/1109.4915_1_72.xhtml
v
¨
+
3
h
v
˙
-
6
h
2
v
=
0
,
Doc 59
0.2609
-9.0000
5.0000
0.2609
testing/NTCIR/xhtml5/6/0907.1786/0907.1786_1_49.xhtml
∂
t
v
¯
ϵ
-
ν
h
∂
y
2
v
¯
ϵ
=
0
,
Doc 60
0.2609
-9.0000
5.0000
0.2609
testing/NTCIR/xhtml5/6/0907.1786/0907.1786_1_48.xhtml
∂
t
v
¯
ϵ
-
ν
h
∂
y
2
v
¯
ϵ
=
0
,
Doc 61
0.2609
-10.0000
5.0000
0.2609
testing/NTCIR/xhtml5/3/math0307353/math0307353_1_233.xhtml
κ
/
2
l
-
1
2
v
-
2
l
-
2
v
=
0
Doc 62
0.2609
-10.0000
5.0000
0.2609
testing/NTCIR/xhtml5/9/1401.4445/1401.4445_1_5.xhtml
i
v
t
+
v
x
x
-
2
|
v
|
2
v
=
0
,
Doc 63
0.2609
-11.0000
6.0000
0.2609
testing/NTCIR/xhtml5/9/1212.1404/1212.1404_1_87.xhtml
0
=
y
f
k
v
-
f
k
y
v
=
δ
(
f
k
)
v
Doc 64
0.2609
-13.0000
5.0000
0.2609
testing/NTCIR/xhtml5/8/1211.0079/1211.0079_1_1.xhtml
v
′′
-
ω
0
2
(
2
tan
2
ω
0
t
+
1
)
v
=
0
Doc 65
0.2410
0.0000
3.0000
0.2410
testing/NTCIR/xhtml5/8/1108.4321/1108.4321_1_15.xhtml
D
v
a
=
0
Doc 66
0.2410
-2.0000
4.0000
0.4819
testing/NTCIR/xhtml5/5/0801.2632/0801.2632_1_90.xhtml
y
r
j
v
j
=
0
y
r
j
v
^
j
=
0
Doc 67
0.2410
-2.0000
4.0000
0.2410
testing/NTCIR/xhtml5/4/math0611737/math0611737_1_82.xhtml
𝔤
1
y
1
v
=
0
Doc 68
0.2410
-3.0000
4.0000
0.2410
testing/NTCIR/xhtml5/1/math0008143/math0008143_1_263.xhtml
x
I
y
J
1
v
=
0
Doc 69
0.2410
-3.0000
4.0000
0.2410
testing/NTCIR/xhtml5/2/math0212153/math0212153_1_47.xhtml
y
β
k
v
¯
ν
=
0
Doc 70
0.2410
-6.0000
2.0000
0.2410
testing/NTCIR/xhtml5/2/math0012063/math0012063_1_172.xhtml
f
22
+
f
21
β
12
-
q
=
0
Doc 71
0.2410
-12.0000
3.0000
0.2410
testing/NTCIR/xhtml5/10/hep-th9904176/hep-th9904176_1_8.xhtml
v
′′
-
c
S
2
Δ
v
-
z
′′
z
v
=
0
,
Doc 72
0.2182
-7.0000
5.0000
0.2182
testing/NTCIR/xhtml5/7/1103.5893/1103.5893_1_19.xhtml
-
Δ
v
+
β
|
u
|
q
-
1
u
=
0
Doc 73
0.2182
-7.0000
5.0000
0.2182
testing/NTCIR/xhtml5/7/1103.5893/1103.5893_1_17.xhtml
-
Δ
v
+
β
|
u
|
q
-
1
u
=
0
Doc 74
0.2182
-12.0000
5.0000
0.2182
testing/NTCIR/xhtml5/9/1312.3497/1312.3497_1_133.xhtml
lim
n
→
ω
∥
y
j
v
n
-
v
n
y
j
∥
2
=
0
Doc 75
0.2182
-12.0000
5.0000
0.2182
testing/NTCIR/xhtml5/9/1308.0942/1308.0942_1_106.xhtml
lim
n
→
ω
∥
y
j
v
n
-
v
n
y
j
∥
2
=
0
Doc 76
0.2041
-1.0000
4.0000
0.2041
testing/NTCIR/xhtml5/10/hep-th9609234/hep-th9609234_1_139.xhtml
-
j
⋅
v
=
0
Doc 77
0.2041
-1.0000
4.0000
0.2041
testing/NTCIR/xhtml5/9/1212.4505/1212.4505_1_43.xhtml
-
K
⋅
v
=
0
Doc 78
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/7/1011.1820/1011.1820_1_48.xhtml
v
z
=
z
v
=
0
Doc 79
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/4/math0604256/math0604256_1_33.xhtml
v
-
e
+
f
=
0
Doc 80
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/9/1303.2229/1303.2229_1_15.xhtml
α
-
β
+
z
=
0
Doc 81
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/3/math0308262/math0308262_1_99.xhtml
v
-
e
+
c
=
0
Doc 82
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/4/hep-th0602163/hep-th0602163_1_69.xhtml
α
-
β
+
γ
=
0
Doc 83
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/5/0812.0080/0812.0080_1_178.xhtml
α
-
β
+
γ
=
0
Doc 84
0.2041
-2.0000
4.0000
0.2041
testing/NTCIR/xhtml5/9/1212.5755/1212.5755_1_85.xhtml
v
-
e
+
f
=
0
Doc 85
0.2041
-4.0000
3.0000
0.2041
testing/NTCIR/xhtml5/4/gr-qc0505085/gr-qc0505085_1_26.xhtml
m
0
D
u
¯
μ
d
τ
Doc 86
0.2041
-6.0000
4.0000
0.2041
testing/NTCIR/xhtml5/9/1306.2914/1306.2914_1_87.xhtml
v
′′
-
q
D
(
x
)
v
=
λ
v
Doc 87
0.2041
-6.0000
4.0000
0.2041
testing/NTCIR/xhtml5/8/1207.0956/1207.0956_1_39.xhtml
v
1
C
-
u
1
B
+
c
=
0
Doc 88
0.2041
-8.0000
5.0000
0.4082
testing/NTCIR/xhtml5/10/gr-qc9904081/gr-qc9904081_1_67.xhtml
1
+
v
1
-
v
2
+
v
3
=
0
;
1
-
v
1
-
v
2
-
v
3
=
0
;
Doc 89
0.2041
-8.0000
5.0000
0.2041
testing/NTCIR/xhtml5/11/math9909013/math9909013_1_78.xhtml
v
(
1
)
-
v
(
23
)
+
v
(
132
)
=
0
Doc 90
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/6/0901.4595/0901.4595_1_17.xhtml
y
v
=
0
Doc 91
0.1860
0.0000
4.0000
0.1860
testing/NTCIR/xhtml5/2/math0108173/math0108173_1_264.xhtml
y
v
=
0
Doc 92
0.1860
-2.0000
4.0000
0.1860
testing/NTCIR/xhtml5/3/math0502534/math0502534_1_42.xhtml
y
i
k
v
=
0
Doc 93
0.1860
-5.0000
3.0000
0.1860
testing/NTCIR/xhtml5/6/0812.4672/0812.4672_1_66.xhtml
v
2
-
c
0
v
0
=
0
Doc 94
0.1860
-7.0000
2.0000
0.1860
testing/NTCIR/xhtml5/4/math0507063/math0507063_1_18.xhtml
v
˙
i
-
2
γ
u
i
=
0
,
Doc 95
0.1644
-11.0000
5.0000
0.1644
testing/NTCIR/xhtml5/6/0911.2708/0911.2708_1_23.xhtml
1
2
u
v
2
-
u
2
v
+
u
+
v
=
0
,
Doc 96
0.1562
-3.0000
4.0000
0.1562
testing/NTCIR/xhtml5/8/1111.6656/1111.6656_1_4.xhtml
v
2
-
4
D
U
=
0
Doc 97
0.1562
-5.0000
4.0000
0.1562
testing/NTCIR/xhtml5/5/0710.2012/0710.2012_1_48.xhtml
v
11
+
V
(
u
1
)
v
=
0
Doc 98
0.1562
-7.0000
5.0000
0.1562
testing/NTCIR/xhtml5/9/1302.4302/1302.4302_1_68.xhtml
β
4
-
2
β
2
-
β
-
1
=
0
Doc 99
0.1455
-3.0000
4.0000
0.1455
testing/NTCIR/xhtml5/5/0707.1836/0707.1836_1_101.xhtml
X
-
2
+
v
=
0
Doc 100
0.1455
-4.0000
4.0000
0.1455
testing/NTCIR/xhtml5/7/1008.4289/1008.4289_1_23.xhtml
β
3
-
β
-
1
=
0
Doc 101
0.1455
-4.0000
4.0000
0.1455
testing/NTCIR/xhtml5/4/math0605682/math0605682_1_123.xhtml
β
i
(
D
′
)
v
=
0
Doc 102
0.1455
-4.0000
4.0000
0.1455
testing/NTCIR/xhtml5/3/math0404144/math0404144_1_81.xhtml
β
k
-
β
+
1
=
0
Doc 103
0.1455
-6.0000
4.0000
0.1455
testing/NTCIR/xhtml5/3/math0405335/math0405335_1_12.xhtml
∑
V
k
β
k
(
v
)
v
=
0
Doc 104
0.1455
-6.0000
4.0000
0.1455
testing/NTCIR/xhtml5/3/math0405335/math0405335_1_11.xhtml
∑
V
k
β
k
(
v
)
v
=
0
Doc 105
0.1455
-9.0000
4.0000
0.1455
testing/NTCIR/xhtml5/7/1006.4318/1006.4318_1_68.xhtml
u
1
+
u
2
-
v
3
-
v
4
=
0