tangent
Not Supported
p
=
-
x
±
x
x0
-
4
(
x1
)
(
x2
x3
-
y
)
2
(
-
g
x
2
x4
)
Search
Returned 98 matches (100 formulae, 105 docs)
Lookup 45589.700 ms, Re-ranking 1327.037 ms
Found 135150279 tuple postings, 12467516 formulae, 4604116 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.2595
-23.0000
3.0000
0.2595
testing/NTCIR/xhtml5/3/hep-th0304053/hep-th0304053_1_27.xhtml
C
1
=
2
(
χ
⋅
∂
)
(
y
x
)
,
C
2
=
x
2
γ
2
(
χ
⋅
∂
)
(
γ
2
x
2
)
Doc 2
0.2442
-11.0000
3.0000
0.2442
testing/NTCIR/xhtml5/6/0906.0240/0906.0240_1_25.xhtml
(
1
2
)
k
i
≤
2
(
1
2
)
k
(
1
2
)
i
Doc 3
0.2442
-19.0000
4.0000
0.2442
testing/NTCIR/xhtml5/6/1003.1021/1003.1021_1_56.xhtml
ℑ
x
(
1
-
r
-
x
2
)
(
r
+
x
2
-
1
)
π
(
1
-
x
2
)
Doc 4
0.2442
-20.0000
6.0000
0.2442
testing/NTCIR/xhtml5/7/1004.3623/1004.3623_1_72.xhtml
u
±
=
x
±
x
2
-
4
y
2
cosh
3
β
(
1
+
cosh
β
)
2
2
cosh
4
β
Doc 5
0.2442
-21.0000
4.0000
0.2442
testing/NTCIR/xhtml5/5/0803.0289/0803.0289_1_14.xhtml
(
1
Y
(
y
)
-
1
X
(
x
)
)
(
d
x
2
X
(
x
)
-
d
y
2
Y
(
y
)
)
Doc 6
0.2208
-10.0000
4.0000
0.4416
testing/NTCIR/xhtml5/10/hep-th9712197/hep-th9712197_1_7.xhtml
R
(
3
)
=
-
(
1
2
)
(
2
2
)
(
3
2
)
R
(
1
)
=
(
1
2
)
(
3
2
)
(
4
2
)
-
1
Doc 7
0.2062
-6.0000
4.0000
0.2062
testing/NTCIR/xhtml5/10/cs9812008/cs9812008_1_69.xhtml
ϕ
(
x
)
(
1
x
-
1
x
3
)
Doc 8
0.2062
-9.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/1308.2344/1308.2344_1_21.xhtml
(
L
(
2
)
2
2
)
(
L
(
4
)
2
4
)
,
Doc 9
0.2062
-9.0000
3.0000
0.2062
testing/NTCIR/xhtml5/7/1008.3401/1008.3401_1_107.xhtml
(
-
3
q
)
=
(
-
1
q
)
(
3
q
)
Doc 10
0.2062
-11.0000
3.0000
0.2062
testing/NTCIR/xhtml5/4/hep-th0606017/hep-th0606017_1_137.xhtml
=
1
4
(
π
3
)
p
2
(
-
4
)
(
3
2
)
Doc 11
0.2062
-11.0000
3.0000
0.2062
testing/NTCIR/xhtml5/3/math0304317/math0304317_1_10.xhtml
1
2
(
ψ
(
3
2
-
x
)
-
ψ
(
1
2
)
)
Doc 12
0.2062
-11.0000
3.0000
0.2062
testing/NTCIR/xhtml5/9/1312.1237/1312.1237_1_47.xhtml
(
-
4
p
)
4
=
(
-
1
p
)
4
(
2
p
)
Doc 13
0.2062
-15.0000
3.0000
0.2062
testing/NTCIR/xhtml5/4/hep-th0504123/hep-th0504123_1_117.xhtml
f
(
x
)
=
δ
⋅
(
x
2
+
1
/
2
x
2
+
1
-
x
)
Doc 14
0.2062
-21.0000
3.0000
0.2062
testing/NTCIR/xhtml5/5/0712.1013/0712.1013_1_35.xhtml
(
∂
∂
x
-
∂
∂
y
)
(
b
(
x
)
-
b
(
y
)
g
(
x
-
y
)
)
=
0
,
Doc 15
0.2062
-21.0000
3.0000
0.2062
testing/NTCIR/xhtml5/4/math0506461/math0506461_1_40.xhtml
∑
t
=
1
p
-
1
∑
x
(
p
)
(
t
2
p
)
(
t
(
x
3
-
x
)
+
1
p
)
Doc 16
0.2062
-27.0000
3.0000
0.2062
testing/NTCIR/xhtml5/8/1111.1350/1111.1350_1_22.xhtml
+
(
1
β
-
1
2
)
(
1
2
log
|
1
-
x
2
|
-
log
(
1
2
(
x
+
x
2
-
1
)
)
)
Doc 17
0.1818
-8.0000
3.0000
0.1818
testing/NTCIR/xhtml5/5/0805.4116/0805.4116_1_3.xhtml
V
(
x
)
=
-
(
1
x
-
1
x
2
)
Doc 18
0.1818
-16.0000
2.0000
0.1818
testing/NTCIR/xhtml5/6/0907.2061/0907.2061_1_122.xhtml
1
x
(
1
+
h
(
1
y
)
)
β
′
(
y
)
+
O
(
1
x
2
)
Doc 19
0.1681
-13.0000
2.0000
0.1681
testing/NTCIR/xhtml5/9/1306.3355/1306.3355_1_18.xhtml
G
0
(
x
)
=
x
1
-
4
x
-
x
-
2
x
2
Doc 20
0.1681
-13.0000
2.0000
0.1681
testing/NTCIR/xhtml5/3/math-ph0402057/math-ph0402057_1_92.xhtml
-
i
y
2
-
x
-
x
2
(
x
2
-
μ
2
)
,
Doc 21
0.1681
-18.0000
3.0000
0.1681
testing/NTCIR/xhtml5/5/0706.2509/0706.2509_1_9.xhtml
exp
(
-
x
2
2
)
H
exp
(
x
2
2
)
=
p
2
+
x
2
-
1
,
Doc 22
0.1681
-20.0000
3.0000
0.1681
testing/NTCIR/xhtml5/3/math0411411/math0411411_1_51.xhtml
L
=
(
1
-
x
2
-
y
2
)
2
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
Doc 23
0.1681
-20.0000
3.0000
0.1681
testing/NTCIR/xhtml5/4/gr-qc0512047/gr-qc0512047_1_8.xhtml
=
(
arcsin
(
y
)
y
3
2
-
1
-
y
y
)
for
1
≥
y
>
0
,
Doc 24
0.1681
-24.0000
3.0000
0.1681
testing/NTCIR/xhtml5/10/hep-th9905089/hep-th9905089_1_20.xhtml
+
1
2
(
1
x
2
-
μ
x
3
)
(
a
-
B
+
1
+
ln
(
x
-
μ
)
-
ln
x
)
Doc 25
0.1681
-27.0000
2.0000
0.1681
testing/NTCIR/xhtml5/6/0911.3886/0911.3886_1_25.xhtml
[
1
2
(
x
-
A
)
-
1
2
(
x
+
A
)
]
log
2
-
A
log
x
x
2
+
o
(
1
x
2
)
Doc 26
0.1597
-10.0000
4.0000
0.1597
testing/NTCIR/xhtml5/3/hep-th0502041/hep-th0502041_1_131.xhtml
S
=
1
2
(
x
1
-
x
2
)
(
y
1
-
y
2
)
Doc 27
0.1597
-15.0000
3.0000
0.1597
testing/NTCIR/xhtml5/9/1302.2853/1302.2853_1_5.xhtml
L
=
1
2
(
m
1
+
λ
x
2
)
(
x
˙
2
-
ω
2
x
2
)
.
Doc 28
0.1597
-15.0000
3.0000
0.1597
testing/NTCIR/xhtml5/3/hep-th0501106/hep-th0501106_1_1.xhtml
L
=
1
2
(
1
1
+
λ
x
2
)
(
x
˙
2
-
α
2
x
2
)
,
Doc 29
0.1597
-19.0000
3.0000
0.1597
testing/NTCIR/xhtml5/5/0707.1137/0707.1137_1_45.xhtml
-
y
1
+
1
4
(
12
x
1
2
-
g
2
2
y
1
)
(
x
1
-
x
3
)
.
Doc 30
0.1519
-14.0000
4.0000
0.3038
testing/NTCIR/xhtml5/4/hep-th0504029/hep-th0504029_1_90.xhtml
C
(
12
)
(
2
)
=
1
(
x
2
-
x
1
)
(
y
1
-
y
2
)
C
I
d
(
2
)
=
1
(
x
2
-
x
1
)
(
y
2
-
y
1
)
Doc 31
0.1519
-15.0000
4.0000
0.1519
testing/NTCIR/xhtml5/3/hep-th0407138/hep-th0407138_1_36.xhtml
(
x
i
-
x
¯
i
)
2
(
y
r
-
y
¯
r
)
2
4
(
t
-
t
¯
)
Doc 32
0.1519
-15.0000
4.0000
0.1519
testing/NTCIR/xhtml5/3/hep-th0403204/hep-th0403204_1_31.xhtml
(
x
i
-
x
¯
i
)
2
(
y
r
-
y
¯
r
)
2
4
(
t
-
t
¯
)
Doc 33
0.1422
-10.0000
2.0000
0.1422
testing/NTCIR/xhtml5/5/0801.2627/0801.2627_1_35.xhtml
1
2
(
cos
(
θ
2
)
-
sin
(
θ
2
)
)
Doc 34
0.1422
-11.0000
3.0000
0.1422
testing/NTCIR/xhtml5/2/math0207236/math0207236_1_18.xhtml
F
1
(
2
x
)
=
x
2
-
sin
2
(
x
)
x
2
Doc 35
0.1422
-12.0000
4.0000
0.1422
testing/NTCIR/xhtml5/5/0806.3389/0806.3389_1_58.xhtml
y
x
=
y
(
1
-
x
)
(
1
-
y
)
.
Doc 36
0.1422
-12.0000
3.0000
0.1422
testing/NTCIR/xhtml5/8/1205.4114/1205.4114_1_14.xhtml
=
f
(
y
x
)
-
x
2
y
2
g
(
y
x
)
Doc 37
0.1422
-13.0000
4.0000
0.1422
testing/NTCIR/xhtml5/4/cs0609020/cs0609020_1_55.xhtml
N
(
x
)
D
(
x
)
=
1
S
(
1
x
)
2
;
Doc 38
0.1422
-13.0000
2.0000
0.1422
testing/NTCIR/xhtml5/6/0910.2989/0910.2989_1_62.xhtml
exp
(
x
2
+
x
2
)
=
exp
(
x
2
)
exp
(
x
2
)
Doc 39
0.1422
-13.0000
2.0000
0.1422
testing/NTCIR/xhtml5/9/1401.2127/1401.2127_1_80.xhtml
cos
(
θ
4
)
cos
(
θ
2
)
-
sin
(
3
θ
4
)
Doc 40
0.1422
-14.0000
2.0000
0.1422
testing/NTCIR/xhtml5/6/0907.2168/0907.2168_1_24.xhtml
F
(
Q
2
)
+
2
(
Φ
(
Q
2
)
-
F
(
Q
2
)
)
Doc 41
0.1422
-15.0000
2.0000
0.1422
testing/NTCIR/xhtml5/9/1305.3186/1305.3186_1_38.xhtml
μ
2
(
x
-
y
)
(
t
0
2
)
∧
μ
2
y
(
t
0
2
)
Doc 42
0.1422
-16.0000
2.0000
0.1422
testing/NTCIR/xhtml5/8/1209.4110/1209.4110_1_195.xhtml
β
(
x
)
=
1
2
(
ψ
(
x
+
1
2
)
-
ψ
(
x
2
)
)
Doc 43
0.1422
-19.0000
4.0000
0.1422
testing/NTCIR/xhtml5/9/1301.0152/1301.0152_1_203.xhtml
=
s
1
(
x
3
-
x
2
2
)
+
s
2
(
1
-
x
3
-
x
2
2
)
Doc 44
0.1422
-20.0000
2.0000
0.1422
testing/NTCIR/xhtml5/6/0812.4909/0812.4909_1_18.xhtml
3
8
e
-
x
2
/
2
(
I
0
(
x
2
2
)
+
I
1
(
x
2
2
)
)
Doc 45
0.1422
-24.0000
4.0000
0.1422
testing/NTCIR/xhtml5/1/0909.3682/0909.3682_1_7.xhtml
=
(
1
-
2
x
2
)
y
-
2
x
3
-
x
2
2
(
x
+
y
)
2
(
x
+
y
+
1
)
2
Doc 46
0.1422
-25.0000
4.0000
0.1422
testing/NTCIR/xhtml5/1/cond-mat9409095/cond-mat9409095_1_1.xhtml
f
(
x
,
y
)
=
1
(
x
-
y
)
2
(
1
-
x
y
)
(
1
-
x
2
)
(
1
-
y
2
)
Doc 47
0.1297
-9.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/math0310197/math0310197_1_57.xhtml
1
(
1
-
x
2
-
x
2
y
2
)
2
Doc 48
0.1297
-9.0000
2.0000
0.1297
testing/NTCIR/xhtml5/5/0705.3252/0705.3252_1_15.xhtml
ψ
(
1
z
)
(
d
(
1
z
)
)
⊗
2
Doc 49
0.1297
-10.0000
3.0000
0.1297
testing/NTCIR/xhtml5/11/hep-th9909224/hep-th9909224_1_59.xhtml
x
n
=
1
2
(
x
n
1
-
x
n
2
)
Doc 50
0.1297
-10.0000
2.0000
0.1297
testing/NTCIR/xhtml5/1/hep-th9309100/hep-th9309100_1_21.xhtml
f
(
x
)
=
1
x
+
0
(
1
x
2
)
Doc 51
0.1297
-11.0000
2.0000
0.1297
testing/NTCIR/xhtml5/1/math-ph0008007/math-ph0008007_1_60.xhtml
α
(
y
)
=
sin
(
y
2
)
(
y
2
)
.
Doc 52
0.1297
-11.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1109.3352/1109.3352_1_13.xhtml
V
(
y
x
)
=
x
2
x
2
-
y
2
,
Doc 53
0.1297
-12.0000
3.0000
0.1297
testing/NTCIR/xhtml5/2/hep-th0107047/hep-th0107047_1_27.xhtml
c
=
1
2
(
k
1
2
+
k
-
1
2
)
Doc 54
0.1297
-12.0000
3.0000
0.1297
testing/NTCIR/xhtml5/10/hep-th9807062/hep-th9807062_1_54.xhtml
z
=
1
2
-
1
2
(
1
-
x
)
1
2
Doc 55
0.1297
-12.0000
2.0000
0.1297
testing/NTCIR/xhtml5/5/0705.0482/0705.0482_1_49.xhtml
x
-
x
2
=
1
4
-
(
x
-
1
2
)
2
Doc 56
0.1297
-12.0000
2.0000
0.1297
testing/NTCIR/xhtml5/5/0705.0482/0705.0482_1_46.xhtml
x
-
x
2
=
1
4
-
(
x
-
1
2
)
2
Doc 57
0.1297
-13.0000
4.0000
0.1297
testing/NTCIR/xhtml5/4/math0512303/math0512303_1_9.xhtml
H
(
1
x
2
+
1
)
=
-
x
x
2
+
1
,
Doc 58
0.1297
-13.0000
3.0000
0.1297
testing/NTCIR/xhtml5/10/hep-th9804058/hep-th9804058_1_31.xhtml
C
d
=
Γ
(
d
)
2
π
d
2
Γ
(
d
2
)
Doc 59
0.1297
-14.0000
3.0000
0.1297
testing/NTCIR/xhtml5/4/hep-th0701179/hep-th0701179_1_57.xhtml
D
z
=
1
2
(
∂
∂
x
1
+
∂
∂
x
2
)
Doc 60
0.1297
-14.0000
3.0000
0.1297
testing/NTCIR/xhtml5/4/math0609566/math0609566_1_98.xhtml
K
=
-
2
(
3
x
2
+
y
)
(
x
2
-
y
)
2
.
Doc 61
0.1297
-14.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/math-ph0407007/math-ph0407007_1_60.xhtml
:
=
p
-
1
p
(
1
2
)
2
(
1
-
2
p
)
Doc 62
0.1297
-15.0000
4.0000
0.1297
testing/NTCIR/xhtml5/5/0711.1063/0711.1063_1_30.xhtml
p
-
1
=
i
2
sign
(
x
-
x
′
)
x
x
′
,
Doc 63
0.1297
-15.0000
3.0000
0.1297
testing/NTCIR/xhtml5/5/0810.4659/0810.4659_1_44.xhtml
ξ
^
1
2
=
1
2
(
∂
∂
x
1
-
∂
∂
x
2
)
Doc 64
0.1297
-15.0000
3.0000
0.1297
testing/NTCIR/xhtml5/10/hep-th9906214/hep-th9906214_1_54.xhtml
-
1
2
(
1
1
-
x
2
-
1
1
+
x
2
)
,
Doc 65
0.1297
-15.0000
2.0000
0.1297
testing/NTCIR/xhtml5/4/cond-mat0605447/cond-mat0605447_1_31.xhtml
(
x
∗
2
-
x
-
1
x
-
1
(
x
-
1
-
1
)
)
N
Doc 66
0.1297
-16.0000
4.0000
0.2595
testing/NTCIR/xhtml5/9/1304.3739/1304.3739_1_15.xhtml
1
2
(
1
λ
x
2
+
1
)
(
m
x
˙
2
-
g
x
2
)
,
1
2
(
1
λ
x
2
+
1
)
(
m
x
˙
2
-
m
α
2
x
2
)
Doc 67
0.1297
-16.0000
4.0000
0.1297
testing/NTCIR/xhtml5/6/0902.1681/0902.1681_1_22.xhtml
f
1
(
λ
)
=
x
-
-
x
+
2
(
x
+
x
-
)
1
2
Doc 68
0.1297
-16.0000
3.0000
0.1297
testing/NTCIR/xhtml5/3/hep-th0308142/hep-th0308142_1_12.xhtml
L
=
1
2
x
˙
2
+
x
˙
y
-
1
2
(
x
-
y
)
2
Doc 69
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/math0405301/math0405301_1_16.xhtml
ψ
^
(
x
)
=
1
2
g
(
x
2
)
ϕ
^
(
x
2
)
Doc 70
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1208.5034/1208.5034_1_3.xhtml
ϕ
t
(
y
)
=
1
t
2
(
γ
+
d
2
)
ϕ
(
y
t
)
Doc 71
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1208.5034/1208.5034_1_31.xhtml
ϕ
t
(
y
)
=
1
t
2
(
γ
+
d
2
)
ϕ
(
y
t
)
Doc 72
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/7/1005.5235/1005.5235_1_44.xhtml
ϕ
t
(
x
)
=
1
t
2
(
γ
+
d
2
)
ϕ
(
x
t
)
Doc 73
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/9/1301.6267/1301.6267_1_5.xhtml
ϕ
t
(
y
)
=
1
t
2
(
γ
+
d
2
)
ϕ
(
y
t
)
Doc 74
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1108.1823/1108.1823_1_94.xhtml
α
(
x
,
y
)
=
(
x
-
y
)
2
2
-
(
x
+
y
)
2
Doc 75
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/math-ph0312070/math-ph0312070_1_45.xhtml
1
+
α
(
k
2
cos
(
k
2
)
sin
(
k
2
)
-
1
)
Doc 76
0.1297
-16.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/math-ph0312070/math-ph0312070_1_56.xhtml
1
+
α
(
k
2
cos
(
k
2
)
sin
(
k
2
)
-
1
)
Doc 77
0.1297
-17.0000
4.0000
0.1297
testing/NTCIR/xhtml5/8/1207.4985/1207.4985_1_7.xhtml
=
1
2
n
(
n
!
)
d
n
(
x
2
-
1
)
n
d
x
n
,
Doc 78
0.1297
-18.0000
2.0000
0.1297
testing/NTCIR/xhtml5/1/math-ph0008009/math-ph0008009_1_12.xhtml
y
(
1
-
y
)
∂
2
F
∂
y
2
-
x
2
∂
2
F
∂
x
2
Doc 79
0.1297
-19.0000
2.0000
0.1297
testing/NTCIR/xhtml5/10/cond-mat9703220/cond-mat9703220_1_25.xhtml
L
(
1
x
)
-
L
(
1
1
+
x
)
=
1
2
L
(
1
x
2
)
Doc 80
0.1297
-19.0000
2.0000
0.1297
testing/NTCIR/xhtml5/4/hep-ph0602149/hep-ph0602149_1_11.xhtml
cos
(
(
n
+
1
2
)
y
R
)
(
sin
(
(
n
+
1
2
)
y
R
)
)
Doc 81
0.1297
-19.0000
2.0000
0.1297
testing/NTCIR/xhtml5/6/0911.5577/0911.5577_1_9.xhtml
d
s
2
=
(
2
1
-
x
2
-
y
2
)
2
(
d
x
2
+
d
y
2
)
Doc 82
0.1297
-20.0000
2.0000
0.1297
testing/NTCIR/xhtml5/5/0805.3879/0805.3879_1_5.xhtml
p
^
r
=
(
1
/
2
)
(
(
x
→
^
r
)
p
→
^
+
p
→
^
(
x
→
^
r
)
)
Doc 83
0.1297
-21.0000
2.0000
0.1297
testing/NTCIR/xhtml5/9/1303.0982/1303.0982_1_76.xhtml
≤
2
(
(
π
2
)
2
x
-
x
)
(
1
+
π
2
4
(
1
-
x
2
)
-
1
)
Doc 84
0.1297
-21.0000
2.0000
0.1297
testing/NTCIR/xhtml5/8/1209.0390/1209.0390_1_68.xhtml
=
1
2
(
a
-
γ
2
4
)
cot
(
x
2
)
(
1
+
cot
2
(
x
2
)
)
Doc 85
0.1297
-22.0000
2.0000
0.1297
testing/NTCIR/xhtml5/6/0907.1488/0907.1488_1_41.xhtml
=
2
x
3
2
(
1
-
x
)
(
1
+
u
)
(
1
+
x
2
-
2
x
u
)
2
,
Doc 86
0.1297
-26.0000
2.0000
0.1297
testing/NTCIR/xhtml5/7/1103.3950/1103.3950_1_81.xhtml
(
x
2
(
1
-
x
)
+
y
2
(
1
-
y
)
)
-
x
(
x
2
(
1
-
x
)
+
1
2
)
Doc 87
0.1297
-27.0000
2.0000
0.1297
testing/NTCIR/xhtml5/3/hep-th0307188/hep-th0307188_1_47.xhtml
×
σ
2
(
x
-
y
)
2
(
d
x
2
x
(
1
-
x
2
)
+
d
y
2
y
(
y
2
-
1
)
)
Doc 88
0.1297
-30.0000
3.0000
0.1297
testing/NTCIR/xhtml5/4/hep-th0511043/hep-th0511043_1_60.xhtml
t
=
2
p
log
(
x
+
y
2
)
+
4
log
(
1
-
x
2
+
1
-
y
2
x
2
-
y
2
)
,
Doc 89
0.1013
-18.0000
3.0000
0.1013
testing/NTCIR/xhtml5/5/0704.2481/0704.2481_1_37.xhtml
A
(
x
)
=
x
+
x
2
(
1
-
x
)
(
1
-
4
x
-
x
2
)
.
Doc 90
0.1013
-18.0000
2.0000
0.1013
testing/NTCIR/xhtml5/6/0910.0926/0910.0926_1_66.xhtml
g
2
x
¯
2
(
d
t
d
y
)
2
=
1
+
(
d
x
¯
d
y
)
2
Doc 91
0.1013
-21.0000
3.0000
0.1013
testing/NTCIR/xhtml5/6/0902.3039/0902.3039_1_52.xhtml
=
[
1
+
2
(
x
+
1
)
]
1
-
x
2
(
1
+
x
)
(
x
-
1
)
2
Doc 92
0.1013
-26.0000
2.0000
0.1013
testing/NTCIR/xhtml5/8/1112.2278/1112.2278_1_75.xhtml
∫
1
2
(
1
-
x
2
-
y
2
)
(
d
x
d
s
)
2
+
(
d
y
d
s
)
2
d
s
Doc 93
0.0909
-11.0000
2.0000
0.0909
testing/NTCIR/xhtml5/6/0907.3056/0907.3056_1_11.xhtml
r
cos
ψ
=
1
2
(
x
1
-
x
2
)
Doc 94
0.0909
-14.0000
1.0000
0.0909
testing/NTCIR/xhtml5/9/1303.4529/1303.4529_1_33.xhtml
f
(
x
)
=
1
x
2
(
cos
x
-
sin
x
x
)
2
Doc 95
0.0909
-15.0000
1.0000
0.0909
testing/NTCIR/xhtml5/6/1003.4556/1003.4556_1_34.xhtml
(
y
1
)
=
x
2
(
x
1
2
+
x
2
2
)
1
2
Doc 96
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0311302/math0311302_1_7.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 97
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/2/math0210337/math0210337_1_3.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 98
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0407288/math0407288_1_23.xhtml
4
(
d
x
2
+
d
y
2
)
(
1
-
x
2
-
y
2
)
2
Doc 99
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0305178/math0305178_1_1.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 100
0.0909
-16.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0408022/math0408022_1_17.xhtml
Δ
=
-
y
2
(
(
∂
∂
x
)
2
+
(
∂
∂
y
)
2
)
Doc 101
0.0909
-18.0000
3.0000
0.0909
testing/NTCIR/xhtml5/8/1112.4601/1112.4601_1_198.xhtml
F
1
(
x
)
=
-
1
x
+
x
-
1
x
2
ln
(
1
-
x
)
Doc 102
0.0909
-20.0000
2.0000
0.0909
testing/NTCIR/xhtml5/6/0910.5676/0910.5676_1_16.xhtml
g
-
1
=
4
(
1
-
x
2
-
y
2
)
2
(
d
x
2
+
d
y
2
)
Doc 103
0.0909
-21.0000
2.0000
0.0909
testing/NTCIR/xhtml5/2/math-ph0103037/math-ph0103037_1_24.xhtml
d
s
2
=
4
(
d
x
2
+
d
y
2
)
(
1
-
x
2
-
y
2
)
2
,
Doc 104
0.0909
-22.0000
2.0000
0.0909
testing/NTCIR/xhtml5/3/math0407288/math0407288_1_24.xhtml
(
1
-
x
2
-
y
2
)
2
4
(
∂
2
∂
x
2
+
∂
2
∂
y
2
)
Doc 105
0.0909
-25.0000
3.0000
0.0909
testing/NTCIR/xhtml5/3/math-ph0411002/math-ph0411002_1_74.xhtml
4
x
3
-
g
2
x
-
g
3
=
(
6
x
2
-
g
2
2
)
(
x
+
ζ
(
ω
)
ω
)