tangent
Not Supported
Z
=
∑
j
g
j
⋅
e
x0
Search
Returned 83 matches (100 formulae, 123 docs)
Lookup 318.197 ms, Re-ranking 167.121 ms
Found 3635274 tuple postings, 1309405 formulae, 960563 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
u
=
∑
j
≥
1
a
j
⋅
o
j
Doc 1
1.0000, -2.0000, 5.0000, 1.0000
testing/NTCIR/xhtml5/8/1207.0696/1207.0696_1_22.xhtml
t
=
∑
j
=
0
d
-
1
𝐭
j
⋅
p
j
Doc 2
1.0000, -5.0000, 5.0000, 1.0000
testing/NTCIR/xhtml5/9/1311.3054/1311.3054_1_82.xhtml
g
=
∑
j
=
1
t
β
j
⋅
g
j
⊙
p
Doc 3
0.8819, -6.0000, 5.0000, 0.8819
testing/NTCIR/xhtml5/9/1311.7178/1311.7178_1_70.xhtml
S
=
∑
j
=
1
k
v
j
⋅
v
j
T
Doc 4
0.8136, -5.0000, 5.0000, 0.8136
testing/NTCIR/xhtml5/7/1006.3585/1006.3585_1_55.xhtml
Z
i
=
∑
j
=
1
m
v
j
i
ρ
v
j
T
E
j
Doc 5
0.8136, -9.0000, 5.0000, 0.8136
testing/NTCIR/xhtml5/6/1003.3651/1003.3651_1_84.xhtml
ϕ
=
∑
j
ϕ
j
⋅
e
j
Doc 6
0.7636, -2.0000, 6.0000, 0.7636
testing/NTCIR/xhtml5/5/0707.0718/0707.0718_1_65.xhtml
Z
W
=
∑
j
=
0
b
-
1
W
j
⋅
Z
W
(
j
)
Doc 7
0.7636, -10.0000, 6.0000, 0.7636
testing/NTCIR/xhtml5/6/0911.1289/0911.1289_1_185.xhtml
r
=
∑
j
g
j
+
⊗
g
j
-
Doc 8
0.6931, -4.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/10/q-alg9506005/q-alg9506005_1_127.xhtml
Φ
(
⋅
)
=
∑
j
Γ
j
⋅
Γ
j
†
Doc 12
0.6931, -5.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/7/1009.2210/1009.2210_1_58.xhtml
Doc 13
0.6931, -5.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/7/1009.2210/1009.2210_1_57.xhtml
Z
=
∑
j
=
1
k
A
j
⊗
B
j
Doc 10
0.6931, -5.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/8/1210.2922/1210.2922_1_46.xhtml
Doc 11
0.6931, -5.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/8/1210.2922/1210.2922_1_44.xhtml
g
=
∑
j
∈
J
g
j
(
y
)
x
j
Doc 9
0.6931, -5.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/5/0805.1305/0805.1305_1_61.xhtml
g
=
∑
m
g
m
(
ρ
)
e
i
m
ψ
Doc 14
0.6931, -5.0000, 4.0000, 0.6931
testing/NTCIR/xhtml5/4/math0508082/math0508082_1_37.xhtml
g
=
∑
j
=
1
n
g
j
d
z
¯
j
Doc 15
0.6931, -6.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/2/math0108035/math0108035_1_20.xhtml
Doc 17
0.6931, -6.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/4/math0607048/math0607048_1_65.xhtml
Doc 18
0.6931, -6.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/2/math0108035/math0108035_1_3.xhtml
w
∞
=
∑
j
w
j
(
s
)
e
i
j
θ
Doc 16
0.6931, -6.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/2/math0110099/math0110099_1_174.xhtml
Z
K
=
∑
μ
𝒩
K
(
μ
)
e
-
𝒜
μ
Doc 19
0.6931, -6.0000, 4.0000, 0.6931
testing/NTCIR/xhtml5/1/1208.1514/1208.1514_1_49.xhtml
Z
=
∑
j
a
j
(
z
)
∂
∂
z
j
,
Doc 20
0.6931, -7.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/5/0710.2316/0710.2316_1_87.xhtml
g
=
∑
j
=
1
n
g
j
d
z
¯
j
.
Doc 21
0.6931, -7.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/2/math0108039/math0108039_1_61.xhtml
g
*
=
∑
j
=
1
m
g
j
(
z
)
e
j
*
Doc 22
0.6931, -8.0000, 6.0000, 0.6931
testing/NTCIR/xhtml5/7/1006.5298/1006.5298_1_158.xhtml
g
(
x
,
z
)
=
∑
j
g
j
(
z
)
x
j
.
Doc 23
0.6931, -8.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/3/math0310182/math0310182_1_93.xhtml
Doc 24
0.6931, -8.0000, 5.0000, 0.6931
testing/NTCIR/xhtml5/3/math0310182/math0310182_1_87.xhtml
g
(
z
)
=
∑
j
=
1
n
′
g
j
(
z
)
e
j
′
Doc 25
0.6931, -10.0000, 6.0000, 0.6931
testing/NTCIR/xhtml5/3/math0405492/math0405492_1_134.xhtml
s
i
=
∑
j
g
j
i
Doc 33
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/2/cond-mat0204111/cond-mat0204111_1_11.xhtml
f
=
∑
j
∈
F
g
j
Doc 26
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_35.xhtml
f
=
∑
j
∈
J
g
j
Doc 27
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_13.xhtml
Doc 29
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_92.xhtml
Doc 36
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_16.xhtml
f
=
∑
j
g
j
h
j
Doc 30
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1107.0175/1107.0175_1_6.xhtml
Doc 34
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1205.3416/1205.3416_1_12.xhtml
Z
=
∑
j
y
j
Z
j
Doc 31
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_43.xhtml
Doc 35
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1301.4514/1301.4514_1_42.xhtml
Z
=
∑
j
n
j
Z
j
Doc 28
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/10/math9704219/math9704219_1_51.xhtml
Doc 32
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.1433/1203.1433_1_106.xhtml
Doc 37
0.6452, -2.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/4/math0512379/math0512379_1_70.xhtml
m
=
∑
j
e
j
g
j
Doc 38
0.6452, -2.0000, 4.0000, 0.6452
testing/NTCIR/xhtml5/8/1207.5256/1207.5256_1_31.xhtml
Z
=
∑
j
=
0
∞
v
j
Doc 39
0.6452, -3.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/4/math0603646/math0603646_1_54.xhtml
f
=
∑
j
∈
J
g
j
,
Doc 40
0.6452, -3.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_7.xhtml
Z
=
∑
j
=
1
n
X
j
2
Doc 46
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1008.4059/1008.4059_1_33.xhtml
x
i
¯
=
∑
j
g
j
i
x
j
Doc 44
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/10/q-alg9508014/q-alg9508014_1_132.xhtml
Z
*
=
∑
j
=
1
N
V
j
Doc 45
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/5/0708.2764/0708.2764_1_53.xhtml
p
=
∑
j
=
1
t
g
j
2
Doc 43
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1203.5722/1203.5722_1_144.xhtml
Z
2
=
∑
j
∈
𝒮
2
X
j
Doc 41
0.6452, -4.0000, 5.0000, 1.2903
testing/NTCIR/xhtml5/9/1304.0682/1304.0682_1_136.xhtml
Z
1
=
∑
j
∈
𝒮
1
X
j
Doc 41
0.6452, -4.0000, 5.0000, 1.2903
testing/NTCIR/xhtml5/9/1304.0682/1304.0682_1_136.xhtml
s
k
=
∑
j
=
1
k
g
j
Doc 42
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/3/math0309405/math0309405_1_39.xhtml
Z
f
=
∑
j
m
j
[
A
j
]
Doc 47
0.6452, -4.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/2/math0108159/math0108159_1_221.xhtml
Z
=
∑
j
=
1
m
a
j
f
j
Doc 49
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1312.3266/1312.3266_1_60.xhtml
Doc 51
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1312.3266/1312.3266_1_59.xhtml
Z
=
∑
j
=
1
n
a
j
ε
j
Doc 53
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/3/math0411288/math0411288_1_3.xhtml
Z
=
∑
j
=
1
q
z
j
X
j
Doc 52
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1107.3996/1107.3996_1_74.xhtml
f
=
∑
j
=
1
p
g
j
h
j
Doc 48
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/10/alg-geom9712016/alg-geom9712016_1_17.xhtml
F
=
∑
j
=
1
m
g
j
f
j
Doc 58
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/5/0706.4113/0706.4113_1_52.xhtml
𝐆
=
∑
j
=
1
N
g
j
𝐱
j
Doc 57
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1207.0235/1207.0235_1_41.xhtml
φ
=
∑
j
=
0
m
g
j
σ
j
Doc 55
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1106.2384/1106.2384_1_37.xhtml
f
=
∑
j
=
1
n
g
j
f
j
Doc 50
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/8/1209.3530/1209.3530_1_128.xhtml
e
i
′
=
∑
j
g
j
i
e
j
Doc 56
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1307.2171/1307.2171_1_5.xhtml
Z
=
∑
j
b
j
∂
∂
x
j
Doc 54
0.6452, -5.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/6/1003.1820/1003.1820_1_4.xhtml
Z
=
∑
j
=
1
N
E
j
F
j
,
Doc 60
0.6452, -6.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/10/chao-dyn9804001/chao-dyn9804001_1_69.xhtml
Z
n
=
∑
j
=
1
n
α
j
(
n
)
Doc 62
0.6452, -6.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/9/1306.6155/1306.6155_1_7.xhtml
f
i
=
∑
j
=
1
l
i
g
j
i
Doc 59
0.6452, -6.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/6/1003.0870/1003.0870_1_121.xhtml
Doc 61
0.6452, -6.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/6/1003.0870/1003.0870_1_124.xhtml
δ
g
=
∑
j
=
1
k
g
j
e
j
*
Doc 67
0.6452, -7.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/6/1002.3923/1002.3923_1_3.xhtml
Z
0
=
∑
j
=
1
q
c
j
Z
j
,
Doc 64
0.6452, -7.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1005.4400/1005.4400_1_193.xhtml
Doc 65
0.6452, -7.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1005.4400/1005.4400_1_192.xhtml
Doc 66
0.6452, -7.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/7/1005.4400/1005.4400_1_194.xhtml
Z
i
(
n
)
=
∑
j
=
1
n
z
j
i
Doc 63
0.6452, -7.0000, 5.0000, 0.6452
testing/NTCIR/xhtml5/10/hep-th9712174/hep-th9712174_1_64.xhtml
h
=
∑
j
e
j
*
⊗
e
j
*
¯
Doc 68
0.6087, -4.0000, 5.0000, 0.6087
testing/NTCIR/xhtml5/4/math0504561/math0504561_1_403.xhtml
h
=
∑
j
e
j
*
⊗
e
j
*
¯
,
Doc 69
0.6087, -5.0000, 5.0000, 0.6087
testing/NTCIR/xhtml5/4/math0504561/math0504561_1_399.xhtml
h
=
∑
h
j
∧
e
j
*
Doc 70
0.5714, -3.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/4/math0511238/math0511238_1_17.xhtml
h
~
=
∑
h
j
∧
e
j
*
Doc 71
0.5714, -4.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/5/0801.0710/0801.0710_1_91.xhtml
g
=
∑
j
=
1
N
g
j
/
N
Doc 72
0.5714, -5.0000, 5.0000, 0.5714
testing/NTCIR/xhtml5/5/0712.3656/0712.3656_1_49.xhtml
1
J
=
∑
j
=
1
r
g
j
+
e
Doc 73
0.5714, -6.0000, 6.0000, 0.5714
testing/NTCIR/xhtml5/5/0709.2308/0709.2308_1_63.xhtml
g
=
∑
j
=
1
4
e
j
⊗
e
j
Doc 74
0.5714, -6.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/7/1104.1612/1104.1612_1_46.xhtml
Doc 75
0.5714, -6.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/7/1104.1612/1104.1612_1_48.xhtml
Doc 76
0.5714, -6.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/7/1104.1612/1104.1612_1_51.xhtml
∑
g
j
+
-
e
+
=
∑
g
i
-
-
e
-
Doc 77
0.5714, -9.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/7/1007.3333/1007.3333_1_58.xhtml
Doc 78
0.5714, -9.0000, 4.0000, 0.5714
testing/NTCIR/xhtml5/7/1007.3333/1007.3333_1_106.xhtml
γ
=
∑
g
j
Doc 79
0.5263, 0.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/2/math0011042/math0011042_1_91.xhtml
g
=
∑
j
g
j
Doc 80
0.5263, -1.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/9/1303.2951/1303.2951_1_118.xhtml
Doc 81
0.5263, -1.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/7/1009.5187/1009.5187_1_45.xhtml
g
s
⋅
e
q
t
Doc 83
0.5263, -1.0000, 3.0000, 0.5263
testing/NTCIR/xhtml5/4/hep-th0503184/hep-th0503184_1_23.xhtml
g
s
⋅
e
t
h
Doc 82
0.5263, -1.0000, 3.0000, 0.5263
testing/NTCIR/xhtml5/10/dg-ga9711018/dg-ga9711018_1_65.xhtml
g
=
∑
j
∈
g
j
Doc 86
0.5263, -2.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/8/1203.6279/1203.6279_1_56.xhtml
=
∑
j
∈
κ
g
j
Doc 85
0.5263, -2.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/5/0809.4940/0809.4940_1_29.xhtml
g
=
∑
j
g
j
.
Doc 84
0.5263, -2.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/5/0807.2193/0807.2193_1_51.xhtml
Z
=
∑
a
j
Z
j
Doc 88
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/9/1309.0880/1309.0880_1_358.xhtml
Z
=
∑
α
j
Z
j
Doc 89
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/3/math0412446/math0412446_1_87.xhtml
Z
=
∑
α
j
W
j
Doc 90
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/7/1009.2458/1009.2458_1_34.xhtml
S
=
∑
g
j
I
j
Doc 93
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/10/hep-ph9504294/hep-ph9504294_1_23.xhtml
f
=
∑
g
j
f
j
Doc 94
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/6/0911.2275/0911.2275_1_51.xhtml
β
=
∑
g
j
χ
j
Doc 91
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/7/1108.0962/1108.0962_1_165.xhtml
Z
=
∑
λ
g
(
λ
)
Doc 92
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/8/1210.6635/1210.6635_1_73.xhtml
Z
=
∑
j
𝐑
γ
j
Doc 87
0.5263, -2.0000, 4.0000, 0.5263
testing/NTCIR/xhtml5/6/0902.2495/0902.2495_1_202.xhtml
g
=
∑
j
2
g
j
2
Doc 95
0.5263, -3.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/4/math0508210/math0508210_1_89.xhtml
g
=
∑
j
∈
ℤ
g
j
Doc 98
0.5263, -3.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/4/math0612457/math0612457_1_104.xhtml
g
=
∑
j
∈
n
g
j
Doc 96
0.5263, -3.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/9/1303.1427/1303.1427_1_103.xhtml
g
^
=
∑
j
g
^
j
Doc 97
0.5263, -3.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/5/0811.0104/0811.0104_1_64.xhtml
g
=
∑
j
=
0
∞
g
j
Doc 100
0.5263, -4.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/4/math0605210/math0605210_1_39.xhtml
g
=
∑
j
=
1
ℓ
g
j
Doc 99
0.5263, -4.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/4/math0609429/math0609429_1_39.xhtml
g
=
∑
j
=
-
∞
∞
g
j
Doc 104
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/8/1210.1973/1210.1973_1_158.xhtml
g
=
∑
j
g
j
x
j
∈
𝒜
Doc 107
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/9/1306.0781/1306.0781_1_37.xhtml
g
(
x
)
=
∑
j
g
j
x
j
Doc 102
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/3/math0310182/math0310182_1_84.xhtml
g
(
z
)
=
∑
j
g
j
z
j
Doc 106
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/2/nlin0107067/nlin0107067_1_15.xhtml
g
=
∑
j
∈
α
ℤ
d
g
j
Doc 103
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/8/1108.6108/1108.6108_1_40.xhtml
V
(
q
)
=
∑
j
g
j
G
j
Doc 101
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_287.xhtml
Doc 105
0.5263, -5.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/8/1210.5565/1210.5565_1_280.xhtml
g
=
∑
j
=
0
log
c
δ
g
j
.
Doc 108
0.5263, -8.0000, 5.0000, 0.5263
testing/NTCIR/xhtml5/4/math0511646/math0511646_1_62.xhtml
N
(
1
)
=
∑
j
e
j
⊗
e
j
Doc 109
0.4800, -5.0000, 5.0000, 0.4800
testing/NTCIR/xhtml5/7/1007.2010/1007.2010_1_140.xhtml
Doc 110
0.4800, -5.0000, 5.0000, 0.4800
testing/NTCIR/xhtml5/7/1007.2010/1007.2010_1_134.xhtml
Z
¯
=
∑
j
=
1
m
Z
j
/
N
Doc 111
0.4800, -6.0000, 5.0000, 0.4800
testing/NTCIR/xhtml5/6/0908.2066/0908.2066_1_34.xhtml
Z
=
∑
j
Z
j
Doc 112
0.4478, -1.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_65.xhtml
Doc 113
0.4478, -1.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_29.xhtml
Doc 114
0.4478, -1.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/7/1102.3537/1102.3537_1_51.xhtml
N
≤
Z
=
∑
j
Z
j
Doc 116
0.4478, -3.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_88.xhtml
N
≫
Z
=
∑
j
Z
j
Doc 115
0.4478, -3.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_11.xhtml
Z
k
=
∑
j
=
1
J
Z
j
,
k
Doc 117
0.4478, -7.0000, 5.0000, 0.4478
testing/NTCIR/xhtml5/7/1010.4755/1010.4755_1_74.xhtml
g
→
3
⋅
e
→
2
Doc 118
0.4068, -3.0000, 3.0000, 0.4068
testing/NTCIR/xhtml5/7/1006.1641/1006.1641_1_12.xhtml
Z
s
=
∑
j
Z
s
j
Doc 119
0.4068, -4.0000, 4.0000, 0.4068
testing/NTCIR/xhtml5/4/math0601214/math0601214_1_126.xhtml
Z
=
∑
Z
j
Doc 120
0.3200, -1.0000, 4.0000, 0.3200
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_60.xhtml
Doc 121
0.3200, -1.0000, 4.0000, 0.3200
testing/NTCIR/xhtml5/4/math0508424/math0508424_1_16.xhtml
Z
=
∑
Z
j
=
0
Doc 122
0.3200, -3.0000, 4.0000, 0.3200
testing/NTCIR/xhtml5/5/0705.1587/0705.1587_1_78.xhtml
Z
j
=
∑
t
Z
j
t
Doc 123
0.3200, -4.0000, 4.0000, 0.3200
testing/NTCIR/xhtml5/8/1110.4414/1110.4414_1_91.xhtml