tangent
Not Supported
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
=
p
d
x
+
v
d
y
Search
Returned 94 matches (100 formulae, 97 docs)
Lookup 187.456 ms, Re-ranking 1995.450 ms
Found 3244827 tuple postings, 2307986 formulae, 1279267 documents
[ formulas ]
[ documents ]
[ documents-by-formula ]
Doc 1
0.7219
-6.0000
20.0000
0.7219
testing/NTCIR/xhtml5/3/hep-th0303216/hep-th0303216_1_60.xhtml
d
=
∂
∂
x
d
x
+
∂
∂
y
d
y
=
∂
x
d
x
+
∂
y
d
y
.
Doc 2
0.7219
-6.0000
20.0000
0.7219
testing/NTCIR/xhtml5/3/hep-th0303216/hep-th0303216_1_151.xhtml
d
=
∂
∂
x
d
x
+
∂
∂
y
d
y
=
∂
x
d
x
+
∂
y
d
y
,
Doc 3
0.7045
-11.0000
16.0000
0.7045
testing/NTCIR/xhtml5/1/math-ph0001004/math-ph0001004_1_15.xhtml
d
I
=
∂
I
∂
x
d
x
+
∂
I
∂
y
d
y
+
∂
I
∂
y
′
d
y
′
=
0.
Doc 4
0.7045
-11.0000
16.0000
0.7045
testing/NTCIR/xhtml5/7/1102.2522/1102.2522_1_41.xhtml
d
H
z
=
∂
H
z
∂
x
d
x
+
∂
H
z
∂
y
d
y
+
∂
H
z
∂
z
d
z
Doc 5
0.7045
-15.0000
16.0000
0.7045
testing/NTCIR/xhtml5/2/math-ph0212036/math-ph0212036_1_15.xhtml
d
H
=
∂
H
∂
x
μ
d
x
μ
+
∂
H
∂
y
i
d
y
i
+
∂
H
∂
p
i
μ
d
p
i
μ
Doc 6
0.6861
0.0000
11.0000
0.6861
testing/NTCIR/xhtml5/1/cond-mat0011151/cond-mat0011151_1_42.xhtml
d
Ψ
=
∂
Ψ
∂
y
d
y
+
∂
Ψ
∂
x
d
x
Doc 7
0.6861
0.0000
11.0000
0.6861
testing/NTCIR/xhtml5/1/cond-mat0011151/cond-mat0011151_1_37.xhtml
d
η
=
∂
η
∂
t
d
t
+
∂
η
∂
x
d
x
Doc 8
0.6861
-1.0000
18.0000
1.6220
testing/NTCIR/xhtml5/10/math9602211/math9602211_1_133.xhtml
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
,
d
c
f
=
∂
f
∂
x
d
y
-
∂
f
∂
y
d
x
,
=
(
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
)
d
x
d
y
,
=
d
(
∂
f
∂
x
)
d
y
-
d
(
∂
f
∂
y
)
d
x
Doc 9
0.6861
-1.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0902.4522/0902.4522_1_34.xhtml
d
H
=
∂
H
∂
x
d
x
+
∂
H
∂
y
d
y
.
Doc 10
0.6861
-1.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0903.4562/0903.4562_1_42.xhtml
d
H
=
∂
H
∂
x
d
x
+
∂
H
∂
y
d
y
.
Doc 11
0.6861
-5.0000
15.0000
0.6861
testing/NTCIR/xhtml5/6/0902.3569/0902.3569_1_34.xhtml
d
H
=
∂
H
∂
x
i
d
x
i
+
∂
H
∂
y
i
d
y
i
.
Doc 12
0.6861
-5.0000
13.0000
0.6861
testing/NTCIR/xhtml5/2/hep-th0106136/hep-th0106136_1_47.xhtml
d
x
i
=
∂
x
i
∂
t
d
t
+
∂
x
i
∂
y
j
d
y
j
Doc 13
0.6651
-9.0000
18.0000
0.6651
testing/NTCIR/xhtml5/5/0810.3434/0810.3434_1_11.xhtml
d
f
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
+
∂
f
∂
z
d
z
.
Doc 14
0.6258
-30.0000
14.0000
0.6258
testing/NTCIR/xhtml5/3/math0311531/math0311531_1_131.xhtml
(
u
+
i
v
)
(
d
x
+
i
d
y
)
=
∂
a
∂
x
d
x
+
∂
a
∂
y
d
y
+
i
∂
b
∂
x
d
x
+
i
∂
b
∂
y
d
y
.
Doc 15
0.6076
-1.0000
16.0000
1.3117
testing/NTCIR/xhtml5/3/math0401039/math0401039_1_48.xhtml
θ
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
θ
*
=
-
∂
f
∂
y
d
x
+
∂
f
∂
x
d
y
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
≡
Δ
f
=
0
Doc 16
0.6076
-1.0000
16.0000
1.3117
testing/NTCIR/xhtml5/6/0901.1741/0901.1741_1_35.xhtml
θ
=
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
θ
*
=
-
∂
f
∂
y
d
x
+
∂
f
∂
x
d
y
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
≡
Δ
f
=
0
Doc 17
0.6076
-15.0000
13.0000
0.6076
testing/NTCIR/xhtml5/4/math-ph0509052/math-ph0509052_1_16.xhtml
ω
g
r
a
d
(
p
)
=
d
p
=
∂
p
∂
x
1
d
x
1
+
∂
p
∂
x
3
d
x
3
.
Doc 18
0.6076
-16.0000
14.0000
0.6076
testing/NTCIR/xhtml5/2/math0107083/math0107083_1_210.xhtml
∂
𝐞
3
∂
x
d
x
+
∂
𝐞
3
∂
y
d
y
=
d
𝐞
3
=
-
𝐞
1
ω
31
-
𝐞
2
ω
32
Doc 19
0.6033
-17.0000
15.0000
0.6033
testing/NTCIR/xhtml5/3/math0401039/math0401039_1_19.xhtml
d
θ
0
=
∂
a
∂
x
1
d
x
1
+
∂
a
∂
x
2
d
x
2
+
∂
a
∂
x
3
d
x
3
,
Doc 20
0.5864
-6.0000
13.0000
0.5864
testing/NTCIR/xhtml5/6/0911.1138/0911.1138_1_4.xhtml
δ
f
=
∂
f
∂
y
δ
y
+
∂
f
∂
y
′
δ
y
′
Doc 21
0.5864
-7.0000
11.0000
0.5864
testing/NTCIR/xhtml5/6/0912.4972/0912.4972_1_66.xhtml
d
x
k
=
∂
x
k
∂
w
d
w
+
∂
x
k
∂
w
¯
d
w
¯
Doc 22
0.5864
-8.0000
12.0000
0.5864
testing/NTCIR/xhtml5/8/1201.3768/1201.3768_1_123.xhtml
λ
d
x
=
μ
d
y
+
∂
Q
∂
x
d
x
+
∂
Q
∂
λ
d
λ
,
Doc 23
0.5864
-26.0000
14.0000
0.5864
testing/NTCIR/xhtml5/6/1003.4999/1003.4999_1_59.xhtml
α
=
1
2
∂
P
∂
x
d
x
+
1
2
∂
P
∂
y
d
y
+
∂
H
ℂ
∂
x
d
x
+
∂
H
ℂ
∂
y
d
y
.
Doc 24
0.5683
-7.0000
11.0000
0.5683
testing/NTCIR/xhtml5/10/math9906079/math9906079_1_19.xhtml
d
E
=
∑
i
∂
E
∂
x
i
d
x
i
+
∂
E
∂
t
d
t
Doc 25
0.5683
-8.0000
14.0000
0.5683
testing/NTCIR/xhtml5/5/0711.1446/0711.1446_1_24.xhtml
𝒅
=
d
+
δ
y
=
∂
∂
x
μ
d
x
μ
+
∂
∂
y
d
y
,
Doc 26
0.5683
-10.0000
13.0000
0.5683
testing/NTCIR/xhtml5/6/1003.4999/1003.4999_1_60.xhtml
θ
=
π
*
(
∂
H
ℂ
∂
x
d
x
+
∂
H
ℂ
∂
y
d
y
)
/
z
k
Doc 27
0.5683
-12.0000
12.0000
0.5683
testing/NTCIR/xhtml5/9/1212.4873/1212.4873_1_172.xhtml
∂
∂
t
ω
~
=
∂
ω
i
∂
t
d
x
i
+
∂
ω
¯
i
∂
t
d
y
i
Doc 28
0.5683
-32.0000
15.0000
0.8221
testing/NTCIR/xhtml5/3/hep-th0307166/hep-th0307166_1_93.xhtml
⋆
d
⋆
f
d
x
d
y
=
⋆
d
f
=
⋆
(
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
)
=
∂
f
∂
x
d
y
-
∂
f
∂
y
d
x
.
⋆
d
⋆
f
d
x
=
⋆
d
(
f
d
y
)
=
⋆
∂
f
∂
x
d
x
∧
d
y
=
∂
f
∂
x
Doc 29
0.5683
-32.0000
15.0000
0.5683
testing/NTCIR/xhtml5/3/hep-th0307166/hep-th0307166_1_96.xhtml
⋆
d
⋆
f
d
x
d
y
=
⋆
d
f
=
⋆
(
∂
f
∂
x
d
x
+
∂
f
∂
y
d
y
)
=
∂
f
∂
x
d
y
-
∂
f
∂
y
d
x
.
Doc 30
0.5291
-15.0000
12.0000
0.5291
testing/NTCIR/xhtml5/6/0812.1185/0812.1185_1_19.xhtml
𝒟
F
(
x
)
=
∂
F
(
x
)
∂
x
∥
d
x
∥
+
∂
F
(
x
)
∂
x
⟂
d
x
⟂
,
Doc 31
0.5076
-16.0000
10.0000
0.5076
testing/NTCIR/xhtml5/10/hep-th9903215/hep-th9903215_1_18.xhtml
κ
d
x
y
=
∂
a
(
x
,
z
)
∂
z
d
x
+
∂
F
(
x
,
z
)
∂
x
d
x
,
Doc 32
0.5076
-18.0000
12.0000
0.5076
testing/NTCIR/xhtml5/9/hep-th9308003/hep-th9308003_1_49.xhtml
𝒟
τ
𝐌
d
τ
+
𝒟
μ
𝐌
d
x
μ
+
∂
𝐌
∂
x
˙
μ
d
x
˙
μ
+
∂
𝐌
∂
x
¨
μ
d
x
¨
μ
Doc 33
0.4992
-3.0000
14.0000
0.4992
testing/NTCIR/xhtml5/3/math0502154/math0502154_1_119.xhtml
d
z
=
p
d
x
+
q
d
y
=
p
d
u
+
v
d
y
Doc 34
0.4992
-8.0000
15.0000
0.4992
testing/NTCIR/xhtml5/7/1011.6076/1011.6076_1_11.xhtml
d
f
=
δ
f
δ
x
i
d
x
i
+
∂
f
∂
y
i
δ
y
i
.
Doc 35
0.4898
-7.0000
11.0000
0.4898
testing/NTCIR/xhtml5/5/0707.0771/0707.0771_1_266.xhtml
d
c
λ
=
-
∂
λ
∂
y
d
x
+
∂
λ
∂
x
d
y
Doc 36
0.4898
-7.0000
11.0000
0.4898
testing/NTCIR/xhtml5/3/math0310474/math0310474_1_68.xhtml
d
c
h
=
-
∂
h
∂
y
d
x
+
∂
h
∂
x
d
y
Doc 37
0.4898
-11.0000
11.0000
0.4898
testing/NTCIR/xhtml5/9/1212.4873/1212.4873_1_99.xhtml
ω
=
1
2
∂
L
∂
y
i
d
x
i
+
∂
L
∂
z
i
d
y
i
Doc 38
0.4898
-18.0000
11.0000
0.4898
testing/NTCIR/xhtml5/3/math0405409/math0405409_1_18.xhtml
∫
γ
k
(
-
∂
u
∂
y
d
x
+
∂
u
∂
x
d
y
)
=
0
(
1
≤
k
≤
n
-
1
)
.
Doc 39
0.4843
-4.0000
14.0000
0.4843
testing/NTCIR/xhtml5/3/math0408397/math0408397_1_46.xhtml
=
∂
f
∂
x
y
′
x
+
∂
f
∂
y
y
′
y
Doc 40
0.4505
-7.0000
12.0000
0.4505
testing/NTCIR/xhtml5/5/0808.2952/0808.2952_1_359.xhtml
d
=
∂
∂
x
1
d
x
1
+
∂
∂
x
2
d
x
2
Doc 41
0.4286
-5.0000
12.0000
0.4286
testing/NTCIR/xhtml5/4/math0606304/math0606304_1_28.xhtml
f
x
=
∂
f
∂
x
,
f
y
=
∂
f
∂
y
Doc 42
0.4286
-7.0000
12.0000
0.4286
testing/NTCIR/xhtml5/5/0804.2208/0804.2208_1_167.xhtml
div
f
=
∂
f
∂
x
1
+
…
+
∂
f
∂
x
n
.
Doc 43
0.4286
-9.0000
10.0000
0.4286
testing/NTCIR/xhtml5/3/math-ph0302030/math-ph0302030_1_9.xhtml
∮
L
(
∂
ψ
∂
x
d
y
-
∂
ψ
∂
y
d
x
)
=
0
,
Doc 44
0.4112
-14.0000
11.0000
0.4112
testing/NTCIR/xhtml5/5/0712.1682/0712.1682_1_16.xhtml
d
f
=
∂
f
∂
x
1
d
x
1
+
…
+
∂
f
∂
x
n
d
x
n
.
Doc 45
0.4112
-23.0000
11.0000
0.8224
testing/NTCIR/xhtml5/2/math0105242/math0105242_1_56.xhtml
d
f
ε
′
1
=
∂
f
ε
′
1
∂
x
1
d
x
1
+
⋯
+
∂
f
ε
′
1
∂
x
n
d
x
n
,
d
f
ε
′
k
=
∂
f
ε
′
k
∂
x
1
d
x
1
+
⋯
+
∂
f
ε
′
k
∂
x
n
d
x
n
.
Doc 46
0.4112
-54.0000
11.0000
0.4112
testing/NTCIR/xhtml5/10/dg-ga9702016/dg-ga9702016_1_29.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
+
∑
k
=
0
r
(
∂
σ
j
1
,
…
,
j
k
f
)
d
y
j
1
,
…
,
j
k
σ
=
∂
f
∂
x
i
d
x
i
+
∑
|
J
|
≤
r
(
∂
σ
J
f
)
d
y
J
σ
.
Doc 47
0.3890
-6.0000
11.0000
0.3890
testing/NTCIR/xhtml5/7/1008.1565/1008.1565_1_5.xhtml
ω
(
⋅
)
=
∂
∂
y
d
x
-
∂
∂
x
d
y
Doc 48
0.3719
-2.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/physics9612015/physics9612015_1_87.xhtml
d
f
=
∂
f
∂
x
μ
d
x
μ
Doc 49
0.3719
-3.0000
10.0000
0.7438
testing/NTCIR/xhtml5/1/math0004162/math0004162_1_14.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
,
d
2
f
=
∂
2
f
∂
x
i
∂
x
j
d
x
(
i
d
x
j
)
+
∂
f
∂
x
i
d
2
x
i
,
Doc 50
0.3719
-3.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/hep-th9604142/hep-th9604142_1_135.xhtml
d
f
=
∂
f
∂
x
i
d
x
i
.
Doc 51
0.3719
-4.0000
10.0000
0.7438
testing/NTCIR/xhtml5/3/math0307303/math0307303_1_10.xhtml
d
a
f
=
∂
f
∂
x
i
d
a
x
i
d
1
d
2
f
=
∂
2
f
∂
x
i
∂
x
j
d
1
x
i
d
2
x
j
+
∂
f
∂
x
i
d
1
d
2
x
i
Doc 52
0.3719
-4.0000
10.0000
0.3719
testing/NTCIR/xhtml5/10/hep-th9402068/hep-th9402068_1_9.xhtml
d
f
=
∂
T
f
∂
x
μ
d
x
μ
,
Doc 53
0.3719
-21.0000
6.0000
0.3719
testing/NTCIR/xhtml5/5/0710.3552/0710.3552_1_4.xhtml
F
=
∂
u
(
t
,
x
)
∂
t
d
t
∧
d
y
+
∂
u
(
t
,
x
)
∂
x
d
x
∧
d
y
Doc 54
0.3493
-3.0000
10.0000
0.3493
testing/NTCIR/xhtml5/3/math0310053/math0310053_1_41.xhtml
∂
f
∂
x
=
0
=
∂
f
∂
y
Doc 55
0.2956
-12.0000
4.0000
0.2956
testing/NTCIR/xhtml5/5/0803.0289/0803.0289_1_33.xhtml
-
Y
(
y
)
∂
U
∂
x
d
x
-
X
(
x
)
∂
U
∂
y
d
y
Doc 56
0.2932
-8.0000
6.0000
0.2932
testing/NTCIR/xhtml5/6/0906.3212/0906.3212_1_2.xhtml
∂
f
∂
x
P
+
∂
f
∂
y
Q
≡
K
f
Doc 57
0.2932
-13.0000
6.0000
0.2932
testing/NTCIR/xhtml5/1/math0009049/math0009049_1_73.xhtml
D
α
f
=
∂
f
∂
t
α
+
∂
f
∂
x
i
x
α
i
.
Doc 58
0.2932
-13.0000
6.0000
0.2932
testing/NTCIR/xhtml5/1/math0009069/math0009069_1_47.xhtml
D
α
f
=
∂
f
∂
t
α
+
∂
f
∂
x
i
x
α
i
.
Doc 59
0.2932
-15.0000
8.0000
0.2932
testing/NTCIR/xhtml5/7/1008.0211/1008.0211_1_26.xhtml
d
μ
f
=
∂
f
∂
x
μ
+
y
,
x
μ
i
∂
f
∂
y
i
.
Doc 60
0.2932
-15.0000
7.0000
0.2932
testing/NTCIR/xhtml5/8/1209.4583/1209.4583_1_41.xhtml
Δ
f
=
∂
2
f
∂
x
k
2
+
∂
2
f
∂
y
k
2
.
Doc 61
0.2835
-36.0000
5.0000
0.2835
testing/NTCIR/xhtml5/4/math-ph0601015/math-ph0601015_1_393.xhtml
∫
∂
U
P
d
x
+
Q
d
y
=
∫
U
d
(
P
d
x
+
Q
d
y
)
=
∫
U
∂
Q
∂
x
d
x
d
y
-
∂
P
∂
y
d
x
d
y
.
Doc 62
0.2697
-20.0000
7.0000
0.2697
testing/NTCIR/xhtml5/3/math0307273/math0307273_1_145.xhtml
d
=
d
′
+
d
′′
,
d
′
=
∂
∂
x
d
x
,
d
′′
=
∂
∂
y
d
y
.
Doc 63
0.2697
-24.0000
6.0000
0.2697
testing/NTCIR/xhtml5/1/math0511009/math0511009_1_15.xhtml
∂
2
|
x
y
|
∂
x
∂
y
d
x
∧
d
y
=
∂
2
|
y
z
|
∂
y
∂
z
d
y
∧
d
z
,
Doc 64
0.2538
-10.0000
6.0000
0.2538
testing/NTCIR/xhtml5/5/math0703694/math0703694_1_32.xhtml
∇
j
f
=
∂
f
∂
y
α
∂
y
α
∂
x
j
Doc 65
0.2538
-10.0000
6.0000
0.2538
testing/NTCIR/xhtml5/5/0809.1614/0809.1614_1_44.xhtml
div
f
=
∂
f
∂
z
+
∂
f
¯
∂
z
¯
.
Doc 66
0.2538
-23.0000
6.0000
0.2538
testing/NTCIR/xhtml5/2/math0111293/math0111293_1_102.xhtml
d
ψ
=
2
i
∂
Φ
∂
x
(
x
)
d
x
+
2
i
∂
Φ
~
∂
y
¯
d
y
¯
.
Doc 67
0.2538
-23.0000
5.0000
0.2538
testing/NTCIR/xhtml5/2/math0101200/math0101200_1_137.xhtml
∫
γ
g
d
x
+
h
d
y
=
∫
S
(
γ
)
(
∂
h
∂
x
-
∂
g
∂
y
)
d
x
d
y
Doc 68
0.2538
-24.0000
7.0000
0.2538
testing/NTCIR/xhtml5/3/hep-th0307166/hep-th0307166_1_95.xhtml
⋆
d
⋆
f
d
x
=
⋆
d
(
f
d
y
)
=
⋆
∂
f
∂
x
d
x
∧
d
y
=
∂
f
∂
x
Doc 69
0.2535
-15.0000
5.0000
0.6821
testing/NTCIR/xhtml5/3/math-ph0402035/math-ph0402035_1_46.xhtml
d
H
d
y
=
∂
H
∂
y
+
∂
H
∂
x
d
x
d
y
=
0
∂
X
∂
y
+
∂
X
∂
x
d
x
d
y
∂
Y
∂
y
+
∂
Y
∂
x
d
x
d
y
Doc 70
0.2295
-6.0000
5.0000
0.2295
testing/NTCIR/xhtml5/6/0902.4306/0902.4306_1_31.xhtml
δ
v
=
∂
f
∂
y
∂
ξ
∂
x
Doc 71
0.2295
-13.0000
6.0000
0.2295
testing/NTCIR/xhtml5/3/math0307273/math0307273_1_51.xhtml
d
′
:=
∂
∂
x
d
x
,
d
′′
:=
∂
∂
y
d
y
.
Doc 72
0.2295
-19.0000
4.0000
0.2295
testing/NTCIR/xhtml5/6/0910.3854/0910.3854_1_5.xhtml
∬
e
∂
[
N
]
∂
y
∂
[
N
]
T
∂
x
d
x
d
y
=
1
3
A
e
×
Doc 73
0.2143
-5.0000
5.0000
0.2143
testing/NTCIR/xhtml5/9/1401.0744/1401.0744_1_42.xhtml
X
=
∂
∂
x
+
∂
∂
y
Doc 74
0.2143
-5.0000
5.0000
0.2143
testing/NTCIR/xhtml5/9/1401.0744/1401.0744_1_37.xhtml
X
=
∂
∂
x
+
∂
∂
y
Doc 75
0.2143
-5.0000
5.0000
0.2143
testing/NTCIR/xhtml5/9/1401.0744/1401.0744_1_30.xhtml
X
=
∂
∂
x
+
∂
∂
y
Doc 76
0.2143
-6.0000
4.0000
0.2143
testing/NTCIR/xhtml5/4/math0609527/math0609527_1_26.xhtml
∂
f
∂
x
=
∂
g
∂
y
.
Doc 77
0.2143
-7.0000
6.0000
0.4286
testing/NTCIR/xhtml5/5/0711.2211/0711.2211_1_32.xhtml
b
=
∂
f
∂
x
-
∂
g
∂
y
a
=
∂
g
∂
x
+
∂
f
∂
y
Doc 78
0.2143
-7.0000
6.0000
0.2143
testing/NTCIR/xhtml5/5/0806.2362/0806.2362_1_103.xhtml
∂
f
∂
x
1
=
∂
f
∂
x
,
Doc 79
0.2143
-8.0000
6.0000
0.2143
testing/NTCIR/xhtml5/3/math0302176/math0302176_1_4.xhtml
∂
f
1
∂
x
+
∂
f
2
∂
y
,
Doc 80
0.2143
-11.0000
6.0000
0.2143
testing/NTCIR/xhtml5/2/math0101200/math0101200_1_172.xhtml
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
=
0
Doc 81
0.2143
-11.0000
5.0000
0.2143
testing/NTCIR/xhtml5/9/1304.5772/1304.5772_1_53.xhtml
∂
f
∂
x
(
p
)
=
0
=
∂
f
∂
y
(
p
)
Doc 82
0.2143
-12.0000
5.0000
0.2143
testing/NTCIR/xhtml5/4/math0701122/math0701122_1_29.xhtml
y
˙
=
∂
F
˙
∂
x
+
∂
y
∂
x
x
˙
.
Doc 83
0.2143
-13.0000
6.0000
0.2143
testing/NTCIR/xhtml5/4/math0701438/math0701438_1_133.xhtml
0
=
∂
f
∂
x
+
∂
f
∂
y
∂
g
∂
x
.
Doc 84
0.2143
-16.0000
5.0000
0.2143
testing/NTCIR/xhtml5/3/math0405269/math0405269_1_152.xhtml
d
f
d
x
=
∂
f
∂
u
+
d
y
d
x
∂
f
∂
v
Doc 85
0.2143
-17.0000
6.0000
0.2143
testing/NTCIR/xhtml5/1/0912.1535/0912.1535_1_10.xhtml
∇
2
f
=
e
f
(
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
)
.
Doc 86
0.2143
-17.0000
6.0000
0.2143
testing/NTCIR/xhtml5/1/0808.2351/0808.2351_1_10.xhtml
∇
2
f
=
e
f
(
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
)
.
Doc 87
0.2143
-18.0000
6.0000
0.2143
testing/NTCIR/xhtml5/2/math-ph0201059/math-ph0201059_1_49.xhtml
Δ
f
=
1
2
π
(
∂
2
f
∂
x
2
+
∂
2
f
∂
y
2
)
.
Doc 88
0.1890
-17.0000
4.0000
0.1890
testing/NTCIR/xhtml5/2/math0107083/math0107083_1_182.xhtml
S
=
1
U
∂
∂
x
⊗
d
x
+
1
V
∂
∂
y
⊗
d
y
Doc 89
0.1747
-4.0000
4.0000
0.1747
testing/NTCIR/xhtml5/10/hep-th9512217/hep-th9512217_1_9.xhtml
∂
∂
x
=
∂
∂
y
Doc 90
0.1747
-6.0000
5.0000
0.1747
testing/NTCIR/xhtml5/4/math0701816/math0701816_1_49.xhtml
∂
f
∂
x
,
∂
f
∂
y
Doc 91
0.1747
-6.0000
5.0000
0.1747
testing/NTCIR/xhtml5/9/1212.2107/1212.2107_1_19.xhtml
∂
f
∂
x
,
∂
f
∂
y
Doc 92
0.1747
-7.0000
5.0000
0.1747
testing/NTCIR/xhtml5/7/1008.5190/1008.5190_1_40.xhtml
∂
f
∂
t
+
v
∂
f
∂
x
Doc 93
0.1747
-8.0000
5.0000
0.1747
testing/NTCIR/xhtml5/2/math0111326/math0111326_1_277.xhtml
∂
f
0
∂
x
,
∂
f
0
∂
y
Doc 94
0.1747
-11.0000
5.0000
0.1747
testing/NTCIR/xhtml5/2/math0110217/math0110217_1_54.xhtml
D
f
=
|
∂
f
∂
x
|
+
|
∂
f
∂
y
|
Doc 95
0.1747
-12.0000
5.0000
0.1747
testing/NTCIR/xhtml5/9/1302.2895/1302.2895_1_26.xhtml
∂
f
∂
y
=
d
d
x
∂
f
∂
y
′
.
Doc 96
0.1747
-16.0000
5.0000
0.1747
testing/NTCIR/xhtml5/6/0902.4306/0902.4306_1_33.xhtml
W
=
∫
w
(
∂
f
∂
x
,
∂
f
∂
y
)
d
y
∧
d
x
Doc 97
0.1747
-19.0000
5.0000
0.1747
testing/NTCIR/xhtml5/5/0705.3415/0705.3415_1_33.xhtml
d
f
=
(
∂
f
y
∂
x
-
∂
f
x
∂
y
)
d
x
∧
d
y
=
0