4003-541-70/4005-741-70
Data Communications and Networks II
Module 4. Network Delay Analysis -- Lecture Notes
Prof. Alan Kaminsky -- Spring Quarter 2006
Rochester Institute of Technology -- Department of Computer Science
Questions
- Given:
- A network topology (graph)
- Capacity of each link (bits/sec)
- Route from each source to each destination
- Traffic level (packets/sec) from each source to each destination
- Packet size distribution (bits/packet)
- Questions:
- How long does it take the average packet to travel from source to destination?
- What is the probability that a packet will be dropped due to buffer overflow?
Queuing Theory
- For mathematical derivations, see:
Unbounded M/M/1 Queue
- Exponential distribution of interarrival times, λ = mean arrival rate
- Exponential distribution of service times, μ = mean service rate
- One server
- Traffic intensity ρ = λ / μ
- Mean queue length N = ρ / (1 - ρ)
- Little's Theorem; applies to any unbounded queue: Mean waiting time T = N / λ
- Mean waiting time T = ρ / (λ(1 - ρ)) = 1 / (μ - λ)
Unbounded M/G/1 Queue
- Exponential distribution of interarrival times, λ = mean arrival rate
- General (any) distribution of service times
- μ = mean service rate
- σ = standard deviation of service rate
- One server
- Traffic intensity ρ = λ / μ
- Mean queue length N = ρ + ρ2 (1 + σ2/μ2) / (2 (1 - ρ))
- Mean waiting time T = N / λ
Unbounded M/C/1 Queue
- Exponential distribution of interarrival times, λ = mean arrival rate
- Constant service time, μ = mean service rate, σ = 0
- One server
- Traffic intensity ρ = λ / μ
- Mean queue length N = (1 - ρ/2) ρ / (1 - ρ)
- Mean waiting time T = (1 - ρ/2) / (μ - λ)
Bounded M/M/1 Queue
- Exponential distribution of interarrival times, λ = mean arrival rate
- Exponential distribution of service times, μ = mean service rate
- One server
- Traffic intensity ρ = λ / μ
- Maximum queue length = n
- If ρ != 1:
- Mean queue length N = (nρn+2 - (n + 1)ρn+1 + ρ) / ((ρn+1 - 1)(ρ - 1))
- Mean waiting time T = (nρn+1 - (n + 1)ρn + 1) / (μ(ρn - 1)(ρ - 1))
- Dropped fraction D = ρn(ρ - 1) / (ρn+1 - 1)
- If ρ = 1:
- Mean queue length N = n / 2
- Mean waiting time T = (n + 1) / (2μ)
- Dropped fraction D = 1 / (n + 1)
Packet Delay Time Measurement In RON
- RCMP Timestamp Request and Timestamp Reply messages (patterned after ICMP)
- Package edu.rit.ron.rcmp
- Program for generating traffic and measuring packet delay (M/C/1 queuing system)
- Package edu.rit.ron.delay
- Package edu.rit.numeric.stat
- Demonstrations
- Configuration file "a101" (unbounded queue)
setAddress 101
addInterface 1 localhost 5671 localhost 5672 4800 2000000000
setRoute 102 1
- Configuration file "a102" (unbounded queue)
setAddress 102
addInterface 1 localhost 5672 localhost 5671 4800 2000000000
setRoute 101 1
- Queuing system parameters
- Link data rate = 4800 bits/sec = 600 bytes/sec
- Packet size = 60 bytes = 12 bytes RON header + 17 bytes RCMP Timestamp Request message header + 31 bytes content
- Constant service time distribution
- Mean service rate = μ = (600 bytes / 1 sec) x (1 packet / 60 bytes) = 10 packets/sec
- Exponential interarrival time distribution
- Mean arrival rate = λ packets/sec
- java edu.rit.ron.delay.Delay01 a102
- java edu.rit.ron.delay.Delay01 a101 142857 31 λ 102 1000
- Results (theoretical mean packet delay from an M/C/1 queuing model)
Measured Measured Theoretical
Interarrival Packet Delay Packet Delay
Time (msec) Time (msec) Time (msec)
lam Mean StdDev StdErr mu Mean StdDev StdErr Mean
--- ---- ------ ------ ---- ---- ------ ------ ----
1.0 984 989 31.3 10.0 132 24.5 0.775 106
2.0 492 495 15.7 10.0 140 35.5 1.12 113
3.0 328 330 10.4 10.0 150 48.2 1.52 121
4.0 246 247 7.81 10.0 165 65.1 2.06 133
5.0 197 198 6.26 10.0 185 87.9 2.78 150
6.0 164 165 5.22 10.0 229 146 4.62 175
7.0 141 141 4.46 10.0 337 271 8.57 217
8.0 123 124 3.92 10.0 617 473 15.0 300
9.0 109 110 3.48 10.0 1970 1290 40.8 550
9.5 104 104 3.29 10.0 3920 2610 82.5 1050
Discrete Event Simulation
Discrete Event Simulation of a Network
- Problem statement: See "Delay Analysis" (PDF -- 494,336 bytes), original page 63
- Package edu.rit.datacomm2.delay
- java edu.rit.datacomm2.delay.Tanenbaum edu.rit.datacomm2.delay.MMGenerator 800 \
edu.rit.discretesim.UnboundedFifoQueueFactory 0 1.5 3 100 142857
- java edu.rit.datacomm2.delay.Tanenbaum edu.rit.datacomm2.delay.MMGenerator 800 \
edu.rit.discretesim.BoundedFifoQueueFactory 3 2.0 3 100 142857
|
Data Communications and Networks II
|
|
4003-541-70/4005-741-70
|
|
Spring Quarter 2006
|
|
Course Page
|
|
Alan Kaminsky
|
|
•
|
|
Department of Computer Science
|
|
•
|
|
Rochester Institute of Technology
|
|
•
|
|
4486 +
2220 =
6706
|
|
Home Page
|
Copyright © 2006 Alan Kaminsky.
All rights reserved.
Last updated 27-Apr-2006.
Please send comments to ark@cs.rit.edu.
|